Fr. 31.90

Probing the Consistency of Quantum Field Theory I

English · Paperback / Softback

Will be released 31.12.2025

Description

Read more










This twövolume Element reconstructs and analyzes the historical debates on whether renormalized quantum field theory is a mathematically consistent theory. This volume covers the years the years immediately following the development of renormalized quantum electrodynamics. It begins with the realization that perturbation theory cannot serve as the foundation for a proof of consistency, due to the non-convergence of the perturbation series. Various attempts at a nonperturbative formulation of quantum field theory are discussed, including the Schwinger-Dyson equations, GunnarKällén's nonperturbative renormalization, the renormalization group of MurrayGell-Mann and Francis Low, and, in the last section, early axiomatic quantum field theory. The second volume of this Element covers the establishment of Haag's theorem, which proved that even the Hilbert space of perturbation theory is an inadequate foundation for a consistent theory. This title is also available as Open Access on Cambridge Core.

List of contents










1. Introduction; 2. The divergence of the perturbation series; 3. The search for non-perturbative solutions; 4. Infinite renormalization and UV behavior; 5. The axiomatic approach; Archives consulted; References.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.