Read more
The integration of new sources of energy like wind power, solar-power, small-scale generation, or combined heat and power in the power grid is something that impacts a lot of stakeholders: network companies (both distribution and transmission), the owners and operators of the DG units, other end-users of the power grid (including normal consumers like you and me) and not in the least policy makers and regulators.
There is a lot of misunderstanding about the impact of DG on the power grid, with one side (including mainly some but certainly not all, network companies) claiming that the lights will go out soon, whereas the other side (including some DG operators and large parks of the general public) claiming that there is nothing to worry about and that it's all a conspiracy of the large production companies that want to protect their own interests and keep the electricity price high.
The authors are of the strong opinion that this is NOT the way one should approach such an important subject as the integration of new, more environmentally friendly, sources of energy in the power grid. With this book the authors aim to bring some clarity to the debate allowing all stakeholders together to move to a solution. This book will introduce systematic and transparent methods for quantifying the impact of DG on the power grid.
List of contents
PREFACE xi
ACKNOWLEDGMENTS xiii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 SOURCES OF ENERGY 6
2.1 Wind Power 7
2.1.1 Status 7
2.1.2 Properties 7
2.1.3 Variations in Wind Speed 8
2.1.4 Variations in Production Capacity 10
2.1.5 The Weibull Distribution of Wind Speed 20
2.1.6 Power Distribution as a Function of the Wind Speed 22
2.1.7 Distribution of the Power Production 26
2.1.8 Expected Energy Production 29
2.2 Solar Power 30
2.2.1 Status 30
2.2.2 Properties 31
2.2.3 Space Requirements 32
2.2.4 Photovoltaics 33
2.2.5 Location of the Sun in the Sky 35
2.2.6 Cloud Coverage 39
2.2.7 Seasonal Variations in Production Capacity 42
2.2.8 Fast Variations with Time 46
2.3 Combined Heat-and-Power 50
2.3.1 Status 50
2.3.2 Options for Space Heating 51
2.3.3 Properties 52
2.3.4 Variation in Production with Time 53
2.3.5 Correlation Between CHP and Consumption 56
2.4 Hydropower 59
2.4.1 Properties of Large Hydro 60
2.4.2 Properties of Small Hydro 61
2.4.3 Variation with Time 61
2.5 Tidal Power 65
2.6 Wave Power 66
2.7 Geothermal Power 67
2.8 Thermal Power Plants 68
2.9 Interface with the Grid 71
2.9.1 Direct Machine Coupling with the Grid 72
2.9.2 Full Power Electronics Coupling with the Grid 73
2.9.3 Partial Power Electronics Coupling to the Grid 75
2.9.4 Distributed Power Electronics Interface 79
2.9.5 Impact of the Type of Interface on the Power System 80
2.9.6 Local Control of Distributed Generation 81
CHAPTER 3 POWER SYSTEM PERFORMANCE 84
3.1 Impact of Distributed Generation on the Power System 84
3.1.1 Changes Taking Place 84
3.1.2 Impact of the Changes 85
3.1.3 How Severe Is This? 86
3.2 Aims of the Power System 87
3.3 Hosting Capacity Approach 88
3.4 Power Quality 91
3.4.1 Voltage Quality 92
3.4.2 Current Quality 92
3.4.3 Multiple Generator Tripping 93
3.5 Voltage Quality and Design of Distributed Generation 95
3.5.1 Normal Operation; Variations 96
3.5.2 Normal Events 96
3.5.3 Abnormal Events 97
3.6 Hosting Capacity Approach for Events 98
3.7 Increasing the Hosting Capacity 100
CHAPTER 4 OVERLOADING AND LOSSES 102
4.1 Impact of Distributed Generation 102
4.2 Overloading: Radial Distribution Networks 105
4.2.1 Active Power Flow Only 105
4.2.2 Active and Reactive Power Flow 108
4.2.3 Case Study 1: Constant Production 109
4.2.4 Case Study 2: Wind Power 110
4.2.5 Case Study 3: Wind Power with Induction Generators 111
4.2.6 Case Study 4: Solar Power with a Hotel 111
4.2.7 Minimum Consumption 115
4.3 Overloading: Redundancy and Meshed Operation 116
4.3.1 Redundancy in Distribution Networks 116
4.3.2 Meshed Operation 117
4.3.3 Redundancy in Meshed Networks 119
4.4 Losses 122
4.4.1 Case Study 1: Constant Production 124
4.4.2 Case Study 2: Wind Power 125
4.5 Increasing the Hosting Capacity 126
4.5.1 Increasing the Loadability 126
4.5.2 Building New Connections 127
4.5.3 Intertrip Schemes 127
4.5.4 Advanced Protection Schemes 128
4.5.5 Energy Management Systems 131
4.5.6 Power Electronics Ap
Report
The author's organization of the book is superb, and the write-up with appropriate examples is very clear. The book will be useful to those who have good prior knowledge in power engineering including power electronics and renewable energy sources. The book offers a very comprehensive discussion of modern power system operation with distributed generation by renewable energy sources. It describes sources of energy, power system performance, overloading and losses, voltage variations, power quality disturbances, faults and protection, and transmission with distributed generation. Many examples are given with emphasis of European system. It is an excellent reference book for modern power engineers.
--Dr. Bimal K. Bose, Condra Chair of Excellence/Emeritus in Power Electronics, University of Tennessee