Fr. 262.00

Applicability of No-insulation High-Temperature Superconductor Saddle-Shaped Dipole Magnet to Particle Accelerator

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

This thesis addresses research on the design, fabrication, and operation of the first saddle-shaped dipole magnet for particle accelerators using a no-insulation high-temperature superconducting (HTS) magnet technology. Unlike HTS magnets with various geometries used in other applications, saddle-shaped magnets posed unresolved challenges in analysis and fabrication due to their complex shape. This thesis is the first study to systematically classify these issues and propose detailed solutions for each. Scaling up the techniques used in this research could enable the development of dipole magnets exceeding 20 T, significantly enhancing particle accelerator performance. Institutions such as CERN and INFN-LASA are pursuing high-field HTS magnets, and this study has led to international collaborations, including Horizon Europe and the International Muon Collider Collaboration. This research has opened a new chapter in foundational technology for particle accelerators, which are widely adopted in particle physics, cancer treatment, chemistry, biotechnology, and materials science. Moreover, it addresses major challenges in HTS magnet technology, such as precise estimation of critical current, screening current analysis, and quench repetition experiments and analysis, by defining these problems and presenting viable solutions with experimental validations.

List of contents

Abstract.- 1 INTRODUCTION.- 2 ANALYSIS METHODS FOR SADDLE-SHAPED DIPOLE MAGNET ADOPTING NO-INSULATION TECHNIQUE.- 3 DESIGN, CONSTRUCTION, AND OPERATION OF SADDLE-SHAPED DIPOLE MAGNET.- 4 EXPERIMENTAL RESULTS AND ANALYSIS OF HTS SADDLE-SHAPED DIPOLE MAGNET.- 5 CONCLUSION.- Appendix.

About the author










Dr. Geonyoung Kim earned Ph.D. from the Department of Electrical and Computer Engineering at Seoul National University in South Korea. His primary area of expertise is in superconducting magnet applications, with a particular focus on developing dipole magnets for use in high-field particle accelerators. And he has gained extensive knowledge and conducted research on various superconducting magnets, including those used in MRI, NMR, and nuclear fusion tokamaks.

Summary

This thesis addresses research on the design, fabrication, and operation of the first saddle-shaped dipole magnet for particle accelerators using a no-insulation high-temperature superconducting (HTS) magnet technology. Unlike HTS magnets with various geometries used in other applications, saddle-shaped magnets posed unresolved challenges in analysis and fabrication due to their complex shape. This thesis is the first study to systematically classify these issues and propose detailed solutions for each. Scaling up the techniques used in this research could enable the development of dipole magnets exceeding 20 T, significantly enhancing particle accelerator performance. Institutions such as CERN and INFN-LASA are pursuing high-field HTS magnets, and this study has led to international collaborations, including Horizon Europe and the International Muon Collider Collaboration. This research has opened a new chapter in foundational technology for particle accelerators, which are widely adopted in particle physics, cancer treatment, chemistry, biotechnology, and materials science. Moreover, it addresses major challenges in HTS magnet technology, such as precise estimation of critical current, screening current analysis, and quench repetition experiments and analysis, by defining these problems and presenting viable solutions with experimental validations.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.