Fr. 47.90

Algorithmic Differentiation in Finance Explained

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book provides the first practical guide to the function and implementation of algorithmic differentiation in finance. Written in a highly accessible way, Algorithmic Differentiation Explained will take readers through all the major applications of AD in the derivatives setting with a focus on implementation.
Algorithmic Differentiation (AD) has been popular in engineering and computer science, in areas such as fluid dynamics and data assimilation for many years. Over the last decade, it has been increasingly (and successfully) applied to financial risk management, where it provides an efficient way to obtain financial instrument price derivatives with respect to the data inputs. Calculating derivatives exposure across a portfolio is no simple task. It requires many complex calculations and a large amount of computer power, which in prohibitively expensive and can be time consuming. Algorithmic differentiation techniques can be very successfully in computing Greeks and sensitivities of a portfolio with machine precision.


Written by a leading practitioner who works and programmes AD, it offers a practical analysis of all the major applications of AD in the derivatives setting and guides the reader towards implementation. Open source code of the examples is provided with the book, with which readers can experiment and perform their own test scenarios without writing the related code themselves.

List of contents

Chapter1 Introduction.- Chapter2 The Principles of Algorithmic Differentiation.- Chapter3 Applications to Finance.- Chapter4 Automated Algorithmic differentiation.- Chapter5 Derivatives to Non-inputs and Non-derivatives to Inputs.- Chapter 6 Calibration.

Summary

This book provides the first practical guide to the function and implementation of algorithmic differentiation in finance. Written in a highly accessible way, Algorithmic Differentiation Explained will take readers through all the major applications of AD in the derivatives setting with a focus on implementation.
Algorithmic Differentiation (AD) has been popular in engineering and computer science, in areas such as fluid dynamics and data assimilation for many years.  Over the last decade, it has been increasingly (and successfully) applied to financial risk management, where it provides an efficient way to obtain financial instrument price derivatives with respect to the data inputs. Calculating derivatives exposure across a portfolio is no simple task.  It requires many complex calculations and a large amount of computer power, which in prohibitively expensive and can be time consuming.  Algorithmic differentiation techniques can be very successfully in computing Greeks and sensitivities of a portfolio with machine precision.

Written by a leading practitioner who works and programmes AD, it offers a practical analysis of all the major applications of AD in the derivatives setting and guides the reader towards implementation.  Open source code of the examples is provided with the book, with which readers can experiment and perform their own test scenarios without writing the related code themselves.

Product details

Authors Marc Henrard
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 11.09.2017
 
EAN 9783319539782
ISBN 978-3-31-953978-2
No. of pages 103
Dimensions 160 mm x 5 mm x 240 mm
Weight 210 g
Illustrations XIII, 103 p. 7 illus.
Series Financial Engineering Explained
Subjects Social sciences, law, business > Business > Business administration

B, Finance, Library, Angewandte Mathematik, Economics and Finance, Applications of Mathematics, Finance & accounting, Economics, Mathematical, Financial Engineering, Quantitative Finance, Mathematics in Business, Economics and Finance, Sensitivity, Greeks, Bucketed Delta, Sticky smile

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.