Fr. 125.00

How to Read and Do Proofs - 6th Edition

English · Paperback / Softback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

Informationen zum Autor Daniel Solow is a professor of management for the Weatherhead School of Management at Case Western Reserve University. His research interests include developing and analyzing optimization models for studying complex adaptive systems, and basic research in deterministic optimization, including combinatorial optimization, linear and nonlinear programming. He has published over 20 papers on both topics. Klappentext This text makes a great supplement and provides a systematic approach for teaching undergraduate and graduate students how to read, understand, think about, and do proofs. The approach is to categorize, identify, and explain (at the student's level) the various techniques that are used repeatedly in all proofs, regardless of the subject in which the proofs arise. How to Read and Do Proofs also explains when each technique is likely to be used, based on certain key words that appear in the problem under consideration. Doing so enables students to choose a technique consciously, based on the form of the problem. Zusammenfassung This text makes a great supplement and provides a systematic approach for teaching undergraduate and graduate students how to read, understand, think about, and do proofs. Inhaltsverzeichnis Foreword xi Preface to the Student xiii Preface to the Instructor xv Acknowledgments xviii Part I Proofs 1 Chapter 1: The Truth of It All 1 2 The Forward-Backward Method 9 3 On Definitions and Mathematical Terminology 25 4 Quantifiers I: The Construction Method 41 5 Quantifiers II: The Choose Method 53 6 Quantifiers III: Specialization 69 7 Quantifiers IV: Nested Quantifiers 81 8 Nots of Nots Lead to Knots 93 9 The Contradiction Method 101 10 The Contrapositive Method 115 11 The Uniqueness Methods 125 12 Induction 133 13 The Either/Or Methods 145 14 The Max/Min Methods 155 15 Summary 163 Part II Other Mathematical Thinking Processes 16 Generalization 179 17 Creating Mathematical Definitions 197 18 Axiomatic Systems 219 Appendix A Examples of Proofs from Discrete Mathematics 237 Appendix B Examples of Proofs from Linear Algebra 251 Appendix C Examples of Proofs from Modern Algebra 269 Appendix D Examples of Proofs from Real Analysis 287 Solutions to Selected Exercises 305 Glossary 357 References 367 Index 369  ...

Product details

Authors Daniel Solow, Daniel (Case Western Reserve University Solow, Solow Daniel
Publisher Wiley, John and Sons Ltd
 
Languages English
Product format Paperback / Softback
Released 19.07.2013
 
EAN 9781118164020
ISBN 978-1-118-16402-0
No. of pages 336
Dimensions 155 mm x 230 mm x 11 mm
Subjects Natural sciences, medicine, IT, technology > Mathematics > Basic principles

Mathematik, Mathematics, Logik u. Grundlagen der Mathematik, Logic & Foundations, Beweis (Math.)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.