Fr. 113.00

Medical Image Understanding and Analysis - 29th Annual Conference, MIUA 2025, Leeds, UK, July 15-17, 2025, Proceedings, Part III

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The three-volume set LNCS 15916,15917 & 15918 constitutes the refereed proceedings of the 29th Annual Conference on Medical Image Understanding and Analysis, MIUA 2025, held in Leeds, UK, during July 15 17, 2025.
The 67 revised full papers presented in these proceedings were carefully reviewed and selected from 99 submissions. The papers are organized in the following topical sections:
Part I: Frontiers in Computational Pathology; and Image Synthesis and Generative Artificial Intelligence.
Part II: Image-guided Diagnosis; and Image-guided Intervention.
Part III: Medical Image Segmentation; and Retinal and Vascular Image Analysis.

List of contents

.- Medical Image Segmentation.
.- TransE2UNet: Edge Guided TransEfficientUNET for Generalized Colon Polyp Segmentation from Endoscopy Images.
.- CA-Seg: An Attribute-based Medical Image Segmentation Framework for Unified Out-of-distributed Medical Image Segmentation.
.- TotalSegmentator 2D: A Tool for Rapid Anatomical Structure Analysis.
.- Promptable Cancer Segmentation Using Minimal Expert-curated Data.
.- SPARS: Self-Play Adversarial Reinforcement Learning for Segmentation of Liver Tumours.
.- Semantic Segmentation with Spreading Scribbles.
.- A Hybrid Transformer-Graph Model for Multi-Class Lymph Node Segmentation in Histopathology.
.- Exploring Context-Switching in Medical Image Retrieval Using Segmentation Models.
.- Segmentation in Histopathology Utilising Simulated Masked Patches.
.- A Feature-Driven Acquisition Strategy Using Scale-Invariant Descriptors for Deep Active Learning in Preclinical CT Segmentation.
.- Quantifying Inter-Annotator Agreement and Generalist Model Limitations in Imaging Mass Cytometry Single Cell Segmentation.
.- Subcortical Masks Generation in CT Images via Ensemble-Based Cross-Domain Label Transfer.
.- DRASU-Net: Dual-backbone and Residual Atrous Squeeze module-aided U-Net Model for Polyp Segmentation.
.- PolypDINO: Adapting DINOv2 for Domain Generalized Polyp Segmentation.
.- Intraoperative Segmentation Through Deep Learning and Mask Post-processing in Laparoscopic Liver Surgery.
.- Retinal and Vascular Image Analysis.
.- Hessian-based Deep Retinal Vessel Segmentation with Extremely Few Annotations.
.- Diffusion with Adversarial Fine-Tuning for Improving Rare Retinal Disease Diagnosis.
.- Deep Learning for Cardiovascular Risk Assessment: Proxy Features from Carotid Sonography as Predictors of Arterial Damage.
.- Enhanced Coronary Artery Segmentation in CTCA Using Bridging Centreline Integration.
.- QD-RetNet: Efficient Retinal Disease Classification via Quantized Knowledge Distillation.
.- Exploring the Effectiveness of Deep Features from Domain-Specific Foundation Models in Retinal Image Synthesis.
.- GenVOG: A Diffusion Probabilistic Framework for Patient-Independent Pose-Guided Nystagmus Video-Oculography (VOG) Generation.
.- Structurally Different Neural Network Blocks for the Segmentation of Atrial and Aortic Perivascular Adipose Tissue in Multi-centre CT Angiography Scans.

Summary

The three-volume set LNCS 15916,15917 & 15918 constitutes the refereed proceedings of the 29th Annual Conference on Medical Image Understanding and Analysis, MIUA 2025, held in Leeds, UK, during July 15–17, 2025.
The 67 revised full papers presented in these proceedings were carefully reviewed and selected from 99 submissions. The papers are organized in the following topical sections:
Part I: Frontiers in Computational Pathology; and Image Synthesis and Generative Artificial Intelligence.
Part II: Image-guided Diagnosis; and Image-guided Intervention.
Part III: Medical Image Segmentation; and Retinal and Vascular Image Analysis.

Product details

Assisted by Sharib Ali (Editor), David C Hogg (Editor), David Hogg (Editor), David C. Hogg (Editor), Michelle Peckham (Editor)
Publisher Springer, Berlin
 
Original title Medical Image Understanding and Analysis
Languages English
Product format Paperback / Softback
Released 15.08.2025
 
EAN 9783031986932
ISBN 978-3-0-3198693-2
No. of pages 336
Dimensions 155 mm x 19 mm x 235 mm
Weight 534 g
Illustrations XIII, 336 p. 99 illus., 92 illus. in color.
Series Lecture Notes in Computer Science
Subjects Natural sciences, medicine, IT, technology > IT, data processing > Application software

Künstliche Intelligenz, machine learning, brain imaging, Artificial Intelligence, Deep Learning, angewandte informatik, Informationstechnik (IT), allgemeine Themen, Computer Vision, Dermatology, Computer and Information Systems Applications, Cardiac Imaging, Image processing, Computing Milieux, medical image analysis, Digital pathology, AI in medical imaging, computational models, AI generalisation, Domain adaptation for medical imaging, Microscopic Imaging

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.