Fr. 109.00

Navier-Stokes Turbulence - Theory and Analysis

English · Paperback / Softback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This updated/augmented second edition retains it class-tested content and pedagogy as a core text for graduate courses in advanced fluid mechanics and applied science. The new edition adds revised sections, clarification, problems, and chapter extensions including a rewritten section on Schauder bases for turbulent pipe flow, coverage of Cantwell's mixing length closure for turbulent pipe flow, and a section on the variational Hessian. Consisting of two parts, the first provides an introduction and general theory of fully developed turbulence, where treatment of turbulence is based on the linear functional equation derived by E. Hopf governing the characteristic functional that determines the statistical properties of a turbulent flow. In this section, Professor Kollmann explains how the theory is built on divergence free Schauder bases for the phase space of the turbulent flow and the space of argument vector fields for the characteristic functional. The second segment, presented over subsequent chapters, is devoted to mapping methods, homogeneous turbulence based upon the hypotheses of Kolmogorov and Onsager, intermittency, structural features of turbulent shear flows and their recognition.

List of contents

Introduction.- Navier-Stokes equations.- Basic properties of turbulent flows.- Flow domains and bases.- Phase and test function spaces.- Probability measure and characteristic functional.- Functional differential equations.- Characteristic functionals for incompressible turbulent flows.- Fdes for the characteristic functionals.- Solution of Hopf type equations in the spatial description.- The role of the pressure .- Properties and construction of Mappings.- M(): Single scalar in homogeneous turbulence.- M(N): Mappings for velocity-scalar and position-scalar Pdfs.- Integral transforms and spectra.- Intermittency.- Equilibrium theory of Kolmogorov and Onsager.- Homogeneous turbulence.- Length and time scales.- The structure of turbulent ows.- Wall-bounded turbulent ows.- The limit of in_nite Reynolds number for incompressible uids.- Appendix A: Mathematical tools.- Appendix B: Example for a measure on a ball in Hilbert space.- Appendix C: Scalar and vector bases for periodic pipe ow.- Modi_ed Jacobi polynomials Pa;b.- n (r).- Orthonormalisation of the modi_ed polynomials Pa;b.- n (r).- Test function space Np: Scalar _elds.- (i) Bases for the test function space Np.- Function spaces: Vector _elds.- (i) Construction of a general vector basis.- (ii) Construction of a solenoidal vector basis.- Gram-Schmidt orthonormalisation.- Appendix D: Green's function for periodic pipe ow.- .- Leray version of the Navier-Stokes pdes.- Appendix E: Semi-empirical treatment of simple wall-bounded ows.- Appendix F: Solutions to problems.- Bibliography.

About the author










Dr. Wolfgang Kollmann is Professor, Emeritus in the Mechanical and Aerospace Engineering Department, University of California, Davis.

Product details

Authors Wolfgang Kollmann
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 25.05.2025
 
EAN 9783031595806
ISBN 978-3-0-3159580-6
No. of pages 819
Dimensions 155 mm x 40 mm x 235 mm
Weight 1446 g
Illustrations XLV, 819 p. 163 illus., 122 illus. in color.
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Mechanics, acoustics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.