Fr. 70.00

Adaptive Discontinuous Galerkin Methods for Non-linear Reactive Flows

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way.  After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence.As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.

List of contents

 1 INTRODUCTION.- 1.1 Geological and computational background.- 1.2 Outline.- 2 DISCONTINUOUS GALERKIN METHODS.- 2.1 Preliminaries.- 2.2 Construction of IPG Methods.- 2.3 Computation Tools for Integral Terms.- 2.4 Effect of Penalty Parameter.- 2.5 Problems with Convection.- 3 ELLIPTIC PROBLEMS WITH ADAPTIVITY.- 3.1 Model Elliptic Problem.- 3.2 Adaptivity.- 3.3 Solution of Linearized Systems.- 3.4 Comparison with Galerkin Least Squares FEM (GLSFEM).- 3.5 Numerical Examples.- 4 PARABOLIC PROBLEMS WITH TIME-SPACE ADAPTIVITY.- 4.1 Preliminaries and Model Equation.- 4.2 Semi-Discrete and Fully Discrete Formulations.- 4.3 Time-Space Adaptivity for Non-Stationary Problems.- 4.4 Solution of Fully Discrete System.- 4.5 Numerical Examples.-REFERENCES. 

Summary

The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way.  After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence.As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.

Product details

Authors Murat Uzunca
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 24.05.2016
 
EAN 9783319301297
ISBN 978-3-31-930129-7
No. of pages 105
Dimensions 155 mm x 8 mm x 234 mm
Weight 200 g
Illustrations IX, 105 p. 38 illus., 10 illus. in color.
Series Geosystems Mathematics
Lecture Notes in Geosystems Mathematics and Computing
Subjects Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Analysis, Geophysik, B, Geophysics, Differentialrechnung und -gleichungen, Mathematics and Statistics, Solid Earth Sciences, Numerical analysis, Partial Differential Equations, Differential calculus & equations, Geophysics/Geodesy

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.