Fr. 104.00

Fundamentals of Machine Theory and Mechanisms

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book develops the basic content for an introductory course in Mechanism and Machine Theory. The text is clear and simple, supported by more than 350 figures. More than 60 solved exercises have been included to mark the translation of this book from Spanish into English. Topics treated include:
dynamic analysis of machines; introduction to vibratory behavior; rotor and piston balanced; critical speed for shafts; gears and train gears; synthesis for planar mechanisms; and kinematic and dynamic analysis for robots. The chapters in relation to kinematics and dynamics for planar mechanisms can be studied with the help of WinMecc software, which allows the reader to study in an easy and intuitive way, but exhaustive at the same time. This computer program analyzes planar mechanisms of one-degree of freedom and whatever number of links. The program allows users to build a complex mechanism. They can modify any input data in real time changing values in a numeric way or usingthe computer mouse to manipulate links and vectors while mechanism is moving and showing the results. This powerful tool does not only show the results in a numeric way by means of tables and diagrams but also in a visual way with scalable vectors and curves.

List of contents


Chapter 1 Kinematic Chains.- 1.1 Basic Concepts.- 1.2 Definitions.- 1.3 Degrees of Freedom of Mechanisms.- 1.4 Kinematic Inversions.- 1.5 Grashof's Criterion.- 1.6 Mechanical Advantage.- 1.7 Kinematic Curves.- 1.8 Application of Different Mechanisms with Different Purposes.- Chapter 2 Kinematic Analysis of Mechanisms. Relative Velocity and Acceleration. Instant Centers of Rotation.- 2.1 Velocity in Mechanisms.- 2.2 Accelerations in Mechanisms.- 2.3 Exercises with their Solutions.- Chapter 3 Analytical methods for the Kinematic Analysis of Planar Linkages. Raven's Method.- 3.1 Analytical Methods.- 3.2 Examples with their Solutions.- Chapter 4 Graphical and Analytical Methods for Dynamic Analysis of Planar Linkages.- 4.1 Machine Statics.- 4.2 Dynamic Analysis.- 4.3 Dynamic Analysis. Matrix Method.- 4.4 Exercises with Solutions.- Chapter 5 Balancing of Machinery.- 5.1 Rotor Balancing.- 5.2 Inertia Balancing of Single and Multi-Cylinder Engines.- 5.3 Problems with Solutions.- Chapter 6 Flywheel Calculations.- 6.1 Forces and Torques in Mechanisms.- 6.2 General Equation of Mechanism Motion.- 6.3 Working Periods of a Cyclic Machine.- 6.4 Steady State.- 6.5 Flywheels.- 6.6 Application Examples of Flywheels.- 6.7 Coefficient of Speed Fluctuation.- 6.8 Design of a Flywheel.- Chapter 7 Vibrations in Systems with one Degree of Freedom.- 7.1 Introduction to Oscillatory Motion.- 7.2 Single Degree of Freedom (SDOF) Systems.- 7.3 Free Vibrations in SDOF Systems.- 7.4 Forced Vibrations in SDOF Systems.- Chapter 8 Gears.- 8.1 Introduction.- 8.2 Toothed Wheels (Gears).- 8.3 Condition for Constant Velocity Ratio. Fundamental Law of Gearing.- 8.4 Involute Teeth.- 8.5 Definitions and Nomenclature.- 8.6 Involute Tooth Action.- 8.7 Contact Ratio.- 8.8 Relationship between Velocity Ratio and Base Circles.- 8.9 Interference in Involute Gears.- 8.10 Gear Classification.- 8.11 Manufacturing of Toothed Wheels.- 8.12 Gear Standardization.- 8.13 Helical Gears.- 8.14 Bevel Gears.- 8.15Force Analysis in Toothed Wheels.- Chapter 9 Gear Trains.- 9.1 Classification of Gear Trains.- 9.2 Ordinary Trains.- 9.3 Planetary or Epicyclic Trains.- 9.4 Examples.- Chapter 10 Synthesis of Planar Mechanisms.- 10.1 Types of Synthesis.- 10.2 Function Generation Synthesis.- 10.3 Trajectory Generation Synthesis.- 10.4 Optimal Synthesis of Mechanisms.- 10.5 Analysis of the Objective Function.- 10.6 Optimization Method Based on Evolutionary Algorithms.- 10.7 Results.- Appendix I: Position Kinematic Analysis. Trigonometric Method.- I.1 Position Analysis of a Four-Bar Mechanism.- I.2 Position Analysis of a Crank-Shaft Mechanism.- I.3 Position Analysis of a Slider Mechanism.- I.4 Two Generic Bars of a Mechanism.- Appendix II: Freudenstein's Method to Solve the Position Equations in a Four-Bar Mechanism.- II.1 Position Analysis of a Four-Bar Mechanism by using Raven's Method.- II.2 Freudenstein's Method.- Appendix III: Kinematic and Dynamic Analysis of a Mechanism.- III.1 Kinematic Chain.- III.2 Slider Displacement versus Crank Rotation.- III.4 Velocity Analysis by Relative Velocity Method.- III.4. Instantaneous Center Method for Velocities.- III.5 Acceleration Analysis with the Relative Acceleration Method.- III.6 Raven's Method.- III.7 Mass, Inertia Moments, Inertia Forces and Inertia Pairs.- III.8. Force Analysis. Graphical Method.- III.9 Dynamic Analysis. Matrix Method.   

Summary

This book develops the basic content for an introductory course in Mechanism and Machine Theory. The text is clear and simple, supported by more than 350 figures. More than 60 solved exercises have been included to mark the translation of this book from Spanish into English. Topics treated include:
dynamic analysis of machines; introduction to vibratory behavior; rotor and piston balanced; critical speed for shafts; gears and train gears; synthesis for planar mechanisms; and kinematic and dynamic analysis for robots. The chapters in relation to kinematics and dynamics for planar mechanisms can be studied with the help of WinMecc software, which allows the reader to study in an easy and intuitive way, but exhaustive at the same time. This computer program analyzes planar mechanisms of one-degree of freedom and whatever number of links. The program allows users to build a complex mechanism. They can modify any input data in real time changing values in a numeric way or usingthe computer mouse to manipulate links and vectors while mechanism is moving and showing the results. This powerful tool does not only show the results in a numeric way by means of tables and diagrams but also in a visual way with scalable vectors and curves.

Product details

Authors Alex Bataller Torras, Juan Antonio Cabrera Carrillo, Francisco Ezquerro Juanco, Antonio Jesús Guerra Fernández, Fernando Nadal Martínez, Antonio Ortiz Fernández, Antonio Simón Mata
Publisher Springer, Berlin
 
Original title Fundamentos de Teoría de Máquinas
Languages English
Product format Paperback / Softback
Released 30.05.2018
 
EAN 9783319811666
ISBN 978-3-31-981166-6
No. of pages 409
Dimensions 156 mm x 24 mm x 237 mm
Weight 646 g
Illustrations XI, 409 p. 345 illus.
Series Mechanisms and Machine Science
Subjects Natural sciences, medicine, IT, technology > Technology > Mechanical engineering, production engineering

B, Klassische Mechanik, Vibration, engineering, Dynamics, Classical mechanics, Mechanical Engineering, Mechanics, Mechanics of solids, Dynamical systems, Vibration, Dynamical Systems, Control, Multibody Systems and Mechanical Vibrations

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.