Fr. 90.00

Uncertainty Quantification - An Accelerated Course with Advanced Applications in Computational Engineering

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. 
Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. 
This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.

List of contents

Fundamental Notions in Stochastic Modeling of Uncertainties and their Propagation in Computational Models.- Elements of Probability Theory.- Markov Process and Stochastic Differential Equation.- MCMC Methods for Generating Realizations and for Estimating the Mathematical Expectation of Nonlinear Mappings of Random Vectors.- Fundamental Probabilistic Tools for Stochastic Modeling of Uncertainties.- Brief Overview of Stochastic Solvers for the Propagation of Uncertainties.- Fundamental Tools for Statistical Inverse Problems.- Uncertainty Quantification in Computational Structural Dynamics and Vibroacoustics.- Robust Analysis with Respect to the Uncertainties for Analysis, Updating, Optimization, and Design.- Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media.

Summary

This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. 
Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. 
This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.

Report

"The book under review serves as an excellent reference for the uncertainty analysis community. ... the author has included an extensive bibliography in the end of the book that will be very useful to the interested reader. ... the book is an excellent reference for advanced users and practitioners of UQ and is strongly recommended." (Tujin Sahai, Mathematical Reviews, September, 2018)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.