Fr. 70.00

An Introduction to Differential Manifolds

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces.

Its ambition is to give solid foundations. In particular, the introduction of "abstract" notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them.

The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory.

The original French text Introduction aux variétés différentielles has been a best-seller in its category in France for many years.

Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs.

List of contents

Differential Calculus.- Manifolds: The Basics.- From Local to Global.- Lie Groups.- Differential Forms.- Integration and Applications.- Cohomology and Degree Theory.- Euler-Poincaré and Gauss-Bonnet.

Report

"The book gives a detailed introduction to the world of differentiable manifolds and is of possible interested to everybody who wants to acquire a basic knowledge of differential geometry. ... Each chapter concludes with a list of exercises, solutions are given in the appendix." (Volker Branding, zbMATH 1338.58001, 2016)

Product details

Authors Jacques Lafontaine
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 22.10.2016
 
EAN 9783319357850
ISBN 978-3-31-935785-0
No. of pages 395
Dimensions 156 mm x 24 mm x 237 mm
Weight 635 g
Illustrations XIX, 395 p. 49 illus.
Subjects Natural sciences, medicine, IT, technology > Mathematics > Geometry

B, Mathematics and Statistics, Differential Geometry, Lie groups, manifolds, Differential forms, Vector Fields, Lie Theory, Tangent Space, differential manifolds, Riemannian Manifolds, Gauss-Bonnet Theorem, Differential Topology

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.