Fr. 70.00

Multiscale Modeling and Simulation of Shock Wave-Induced Failure in Materials Science

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Martin Oliver Steinhauser deals with several aspects of multiscale materials modeling and simulation in applied materials research and fundamental science. He covers various multiscale modeling approaches for high-performance ceramics, biological bilayer membranes, semi-flexible polymers, and human cancer cells. He demonstrates that the physics of shock waves, i.e., the investigation of material behavior at high strain rates and of material failure, has grown to become an important interdisciplinary field of research on its own. At the same time, progress in computer hardware and software development has boosted new ideas in multiscale modeling and simulation. Hence, bridging the length and time scales in a theoretical-numerical description of materials has become a prime challenge in science and technology.

List of contents

Definition of Shock Waves.- Multiscale Modeling and Simulation in Hard Matter.- Shock Wave Failure in Granular Materials.- Coarse-Grained Modeling and Simulation of Macromolecules.- Laser-Induced Shock Wave Failure in Human Cancer Cells.- The Future of Multiscale Materials Modeling.

Summary

Martin Oliver Steinhauser deals with several aspects of multiscale materials modeling and simulation in applied materials research and fundamental science. He covers various multiscale modeling approaches for high-performance ceramics, biological bilayer membranes, semi-flexible polymers, and human cancer cells. He demonstrates that the physics of shock waves, i.e., the investigation of material behavior at high strain rates and of material failure, has grown to become an important interdisciplinary field of research on its own. At the same time, progress in computer hardware and software development has boosted new ideas in multiscale modeling and simulation. Hence, bridging the length and time scales in a theoretical-numerical description of materials has become a prime challenge in science and technology.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.