Fr. 84.00

Divergent Series, Summability and Resurgence I - Monodromy and Resurgence

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Providing an elementary introduction to analytic continuation and monodromy, the first part of this volume applies these notions to the local and global study of complex linear differential equations, their formal solutions at singular points, their monodromy and their differential Galois groups. The Riemann-Hilbert problem is discussed from Bolibrukh's point of view.
The second part expounds 1-summability and Ecalle's theory of resurgence under fairly general conditions. It contains numerous examples and presents an analysis of the singularities in the Borel plane via "alien calculus", which provides a full description of the Stokes phenomenon for linear or non-linear differential or difference equations.
The first of a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists interested in geometric, algebraic or local analytic properties of dynamical systems. It includes useful exercises with solutions. The prerequisites are a working knowledge of elementary complex analysis and differential algebra.

List of contents

Preface.-Preface to the three volumes.- Part I:Monodromy in Linear Differential Equations.- 1 analytic continuation and monodromy.- Differential Galois Theory.- Inverse Problems.- The Riemann-Hilbert problem.- Part II: Introduction to 1-Summability and Resurgence.- 5 Borel-Laplace Summation.- Resurgent Functions and Alien Calculus.- the Resurgent Viewpoint on Holomorphic Tangent-to-Identity Germs.- Acknowledgements.- Index.

Summary

Providing an elementary introduction to analytic continuation and monodromy, the first part of this volume applies these notions to the local and global study of complex linear differential equations, their formal solutions at singular points, their monodromy and their differential Galois groups. The Riemann-Hilbert problem is discussed from Bolibrukh’s point of view.
The second part expounds 1-summability and Ecalle’s theory of resurgence under fairly general conditions. It contains numerous examples and presents an analysis of the singularities in the Borel plane via “alien calculus”, which provides a full description of the Stokes phenomenon for linear or non-linear differential or difference equations.
The first of a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists interested in geometric, algebraic or local analytic properties of dynamical systems. It includes useful exercises with solutions. The prerequisites are a working knowledge of elementary complex analysis and differential algebra.

Additional text

“The book is the first of three independent books whose aim is to describe methods of the analytic theory of differential equations such as monodromy, analytic continuation, resurgence, summability etc. It is aimed at graduate students, mathematicians and theoretical physicists.” (Vladimir P. Kostov, zbMATH 1355.34003, 2017)

Report

"The book is the first of three independent books whose aim is to describe methods of the analytic theory of differential equations such as monodromy, analytic continuation, resurgence, summability etc. It is aimed at graduate students, mathematicians and theoretical physicists." (Vladimir P. Kostov, zbMATH 1355.34003, 2017)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.