Fr. 158.00

The Fundamentals of Modern Statistical Genetics

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book covers the statistical models and methods that are used to understand human genetics, following the historical and recent developments of human genetics. Starting with Mendel s first experiments to genome-wide association studies, the book describes how genetic information can be incorporated into statistical models to discover disease genes. All commonly used approaches in statistical genetics (e.g. aggregation analysis, segregation, linkage analysis, etc), are used, but the focus of the book is modern approaches to association analysis. Numerous examples illustrate key points throughout the text, both of Mendelian and complex genetic disorders.The intended audience is statisticians, biostatisticians, epidemiologists and quantitatively- oriented geneticists and health scientists wanting to learn about statistical methods for genetic analysis, whether to better analyze genetic data, or to pursue research in methodology. A background in intermediate level statistical methods is required. The authors include few mathematical derivations, and the exercises provide problems for students with a broad range of skill levels. No background in genetics is assumed.

List of contents

Introduction to statistical genetics and background in molecular genetics.- Principles of inheritance: mendel's laws and genetic models.- Some basic concepts from population genetics.- Aggregation, heritability and segregation analysis: modeling genetic inheritance without genetic data.- The general concepts of gene mapping: Linkage, association, linkage disequilibrium and marker maps.- Basic concepts of linkage analysis.- The basics of genetic association analysis.- Population substructure in association studies.- Association analysis in family designs.- Advanced topics.- Genome wide assocation studies.- Looking toward the future.

About the author










Dr. Laird is a Professor of Biostatistics in the Biostatistics Department at the Harvard School of Public Health. Dr. Laird has contributed to methodology in many different fields, including missing data, EM-algorithm, meta-analysis, statistical genetics, and has coauthored a book with Garrett Fitzmaurice and James Ware on Applied Longitudinal Analysis. She is the recipient of many awards and prizes, including Fellow of the American Statistical Association, the American Association for the Advancement of Science, the Florence Nightingale Award, and the Janet Norwood Award.

Dr. Lange is an Associate Professor in the Biostatistics Department at the Harvard School of Public Health. After his PhD in Statistics at the University of Reading (UK), he has worked extensively in the field of statistical genetics. Dr. Lange has been the director of the Institute of Genome Mathematics at the University of Bonn and has received several awards in mathematics and genetics. Dr. Lange is the developer of the PBAT package.

Report

From the reviews:
"The book covers the historical perspective, covering the standard models and methods. ... The presentation of the material is carefully thought through. There are lots of figures, many in colour, a large number of examples, numerous boxes that highlight particular derivations and computations, and exercises at the ends of the chapters. All topics are clearly discussed with due detail. I would say that, for the budding statistical geneticist, this is a must-have." (Martin Crowder, International Statistical Review, Vol. 79 (3), 2011)
"A book that focuses on statistical methods for finding links between genes and diseases ... is timely. ... the authors steer us gently and diligently through material that was developed originally for postgraduate students at the Harvard School of Public Health ... . ideal for a statistician intending to research in this area or simply for a curious, sufficiently qualified reader. ... a lovely book, and essential reading if you are a budding GWASer, or simply interested in where your next disease will come from." (G. Wood, Australian & New Zealand Journal of Statistics, Vol. 53 (4), 2011)
"The Fundamentals of Modern Statistical Genetics, by Dr. Nan M. Laird and Dr. Christoph Lange, is a timely reference for both researchers and students. ... the book is clearly written, and it is useful for colleagues who are interested in the association analysis. Although the book primarily covers the interesting topic of association analysis, it does touch other interesting topics such as joint linkage and association mapping of complex traits." (Ruzong Fan, Journal of the American Statistical Association, March, 2013)

Product details

Authors Nan M. Laird, Christoph Lange
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 28.01.2013
 
EAN 9781461427759
ISBN 978-1-4614-2775-9
No. of pages 226
Dimensions 154 mm x 236 mm x 16 mm
Weight 387 g
Illustrations XIV, 226 p.
Series Statistics for Biology and Health
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.