Fr. 77.00

Stochastic Porous Media Equations

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found.
The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model".
The book will be of interest to PhD students and researchers in mathematics, physics and biology.

List of contents

Foreword.- Preface.- Introduction.- Equations with Lipschitz nonlinearities.- Equations with maximal monotone nonlinearities.- Variational approach to stochastic porous media equations.- L1-based approach to existence theory for stochastic porous media equations.- The stochastic porous media equations in Rd.- Transition semigroups and ergodicity of invariant measures.- Kolmogorov equations.- A Two analytical inequalities.- Bibliography.- Glossary.- Translator's note.- Index.

Summary

Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found.
The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model".
The book will be of interest to PhD students and researchers in mathematics, physics and biology.

Report

"The authors of the monograph are renowned experts in the field of SPDEs and the book may be of interest not only to SPDE specialists but also to other researchers in mathematics, physics and biology." (Bohdan Maslowski, Mathematical Reviews, July, 2018)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.