Fr. 116.40

Calculus of Fractions and Homotopy Theory

English · Hardback

Shipping usually takes at least 4 weeks (title will be specially ordered)

Description

Read more










The main purpose of the present work is to present to the reader a particularly nice category for the study of homotopy, namely the homo- topic category (IV). This category is, in fact, - according to Chapter VII and a well-known theorem of J. H. C. WHITEHEAD - equivalent to the category of CW-complexes modulo homotopy, i.e. the category whose objects are spaces of the homotopy type of a CW-complex and whose morphisms are homotopy classes of continuous mappings between such spaces. It is also equivalent (I, 1.3) to a category of fractions of the category of topological spaces modulo homotopy, and to the category of Kan complexes modulo homotopy (IV). In order to define our homotopic category, it appears useful to follow as closely as possible methods which have proved efficacious in homo- logical algebra. Our category is thus the" topological" analogue of the derived category of an abelian category (VERDIER). The algebraic machinery upon which this work is essentially based includes the usual grounding in category theory - summarized in the Dictionary - and the theory of categories of fractions which forms the subject of the first chapter of the book. The merely topological machinery reduces to a few properties of Kelley spaces (Chapters I and III). The starting point of our study is the category,10 Iff of simplicial sets (C.S.S. complexes or semi-simplicial sets in a former terminology).

Product details

Authors Peter Gabriel, M. Zisman
Publisher Springer Nature
 
Languages English
Product format Hardback
Released 01.01.1967
 
EAN 9780387037776
ISBN 978-0-387-03777-6
No. of pages 168
Subject Natural sciences, medicine, IT, technology > Mathematics > Geometry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.