Fr. 92.00

Machine Learning, Optimization, and Data Science - 10th International Conference, LOD 2024, Castiglione della Pescaia, Italy, September 22-25, 2024, Revised Selected Papers, Part II

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The three-volume set LNAI 15508-15510 constitutes the refereed proceedings of the 10th International Conference on Machine Learning, Optimization, and Data Science, LOD 2024, held in Castiglione della Pescaia, Italy, during September 22-25, 2024.
This year, in the LOD Proceedings decided to also include the papers of the fourth edition of the Symposium on Artificial Intelligence and Neuroscience (ACAIN 2024).
The 79 full papers included in this book were carefully reviewed and selected from 127 submissions. The LOD 2024 proceedings focus on machine learning, deep learning, AI, computational optimization, neuroscience and big data that includes invited talks, tutorial talks, special sessions, industrial tracks, demonstrations and oral and poster presentations of refereed papers.

List of contents

.- Exploring Explainable Machine Learning for Enhanced Ship Performance Monitoring.
.- Identifying Potential Key Point of Sale Customers Using Network Centrality.
.- Hyperparameter Optimization for Driving Strategies Based on Reinforcement Learning.
.- Predicting Multiple Sclerosis Worsening Using Stratification Based and Time Dependent Variables Extracted from Routine Visits Data.
.- Predicting University Dropout Rates Using Machine Learning: UniCt case.
.- Investigating on Gradient Regularization for Testing Neural Networks.
.- SKIE SRL: Structured Key Information Extraction from Business Documents using Statistical Relational Learning.
.- Leveraging LLM powered Systems to Accelerate Mycobacterium tuberculosis Research Step One: From Documents to the Vectorstore.
.- Vegvisir: Probabilistic model (VAE) for viral T cell epitope prediction.
.- Tiny Long Short Term Memory Model for Resource Constrained Prediction of Battery Cycle Life.
.- Compact Artificial Neural Network Models for Predicting Protein Residue RNA Base Binding.
.- FWin transformer for dengue prediction under climate and ocean influence.
.- ENGinnSAND: A Reference Dataset for Monocular Depth Prediction of Line Structures.
.- Topological Layering of Mouse Brain Activity in Light Sheet Microscopy Datasets.
.- A Constraint Based Savings Algorithm for the Traveling Salesman Problem.
.- Gaussian process interpolation with conformal prediction: methods and comparative analysis.
.- Using embeddings of pre trained models for cross database dysarthria detection: supervised vs. self supervised approach.
.- Personality Profiling for Literary Character Dialogue Agents with Human Level Attributes.
.- Integrating Logit Space Embeddings for Reliable Out of Distribution Detection.
.- A Computational Framework for Identifying Salient Moments in Motion Capture Data.
.- Machine Learning for the Evaluation of the Nephrops Norvegicus Population.
.- Enhancing Cluster Based Topic Models through Parametric Dimensionality Reduction with Transformer Encoders.
.- Enhancing Arrhythmia Detection Using an Ensemble of Transformer Models for Heartbeat Classification.
.- Rapidly Computing Approximate Graph Convex Hulls via FastMap.
.- Deep Gaussian mixture model for unsupervised image segmentation.
.- Address Classification in E commerce Logistics Using Federated Learning.

Product details

Assisted by Sven Giesselbach (Editor), Sven Giesselbach et al (Editor), Giuseppe Nicosia (Editor), Varun Ojha (Editor), M. Panos Pardalos (Editor), Giesselbach Sven (Editor), Giesselbach Sven et al (Editor), Renato Umeton (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 08.02.2025
 
EAN 9783031824838
ISBN 978-3-0-3182483-8
No. of pages 364
Dimensions 155 mm x 21 mm x 235 mm
Weight 575 g
Illustrations XIII, 364 p. 90 illus., 82 illus. in color.
Series Lecture Notes in Computer Science
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

Data Science, Big Data, machine learning, Optimization, Artificial Intelligence, Deep Learning, Neuroscience, Neural Networks, Reinforcement Learning, Data Analytics, Cognitive Science, Large Language Models, Deep Reinforcement Learning, multi-objective optimization, global optimization, Computational Neuroscience, foundation models, Generative Artificial Intelligence, Artificial General Intelligence, Computational Optimization

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.