Fr. 90.00

Generative Adversarial Networks and Deep Learning - Theory and Applications

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. It concentrates on cutting-edge research in DL and GAN which includes creating new tools and methods for processing text, images, and audio.


List of contents










1. Generative Adversarial Networks and Its Use cases. 2. Image-to-Image Translation using Generative Adversarial Networks. 3. Image Editing Using Generative Adversarial Network. 4. Generative Adversarial Networks for Video to Video Translation. 5. Security Issues in Generative Adversarial Networks. 6. Generative Adversarial Networks aided Intrusion Detection System. 7. Textual Description to Facial Image Generation. 8. An application of Generative Adversarial Network in Natural Language Generation. 9. Beyond image synthesis: GAN and Audio: It covers how GAN will be used for audio synthesis along with its applications. 10. A Study on the Application Domains of Electroencephalogram for the Deep Learning-Based Transformative Healthcare. 11. Emotion Detection using Generative Adversarial Network. 12. Underwater Image Enhancement Using Generative Adversarial Network. 13. Towards GAN Challenges and Its Optimal Solutions.


Summary

This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. It concentrates on cutting-edge research in DL and GAN which includes creating new tools and methods for processing text, images, and audio.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.