Fr. 238.00

Machine Learning and Granular Computing: A Synergistic Design Environment

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This volume provides the reader with a comprehensive and up-to-date treatise positioned at the junction of the areas of Machine Learning (ML) and Granular Computing (GrC). ML offers a wealth of architectures and learning methods. Granular Computing addresses useful aspects of abstraction and knowledge representation that are of importance in the advanced design of ML architectures. In unison, ML and GrC support advances of the fundamental learning paradigm. As built upon synergy, this unified environment focuses on a spectrum of methodological and algorithmic issues, discusses implementations and elaborates on applications. The chapters bring forward recent developments showing ways of designing synergistic and coherently structured ML-GrC environment. The book will be of interest to a broad audience including researchers and practitioners active in the area of ML or GrC and interested in following its timely trends and new pursuits.

List of contents

1. Explainability of Machine Learning Using Shapley Additive exPlanations (SHAP): CatBoost, XGBoost and LightGBM for Total Dissolved Gas Prediction.- 2. Explainable Deep Fuzzy Systems Applied to Sulfur Recovery Unit.- 3. Granular Fuzzy Model with High Order Singular Values Decomposition and Hesitation Fuzzy Granularity.- 4. Granular Trapezoidal Type-2 Shallow Fuzzy Neural Network.- 5. A Design of Multi-Granular Fuzzy Model with Hierarchical Tree Structure Using CFCM Clustering.- 6. Screening, Prediction and Remission of Depressive Disorder Using the Fuzzy Probability Function and Petri Net.

Product details

Assisted by Shyi-Ming Chen (Editor), Witold Pedrycz (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 22.09.2024
 
EAN 9783031668418
ISBN 978-3-0-3166841-8
No. of pages 352
Dimensions 155 mm x 20 mm x 235 mm
Weight 714 g
Illustrations VIII, 352 p. 116 illus., 103 illus. in color.
Series Studies in Big Data
Subject Natural sciences, medicine, IT, technology > Technology > General, dictionaries

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.