Fr. 236.00

Toward Trustworthy Adaptive Learning - Explainable Learner Models

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more










This book offers an in-depth exploration of explainable learner models, presenting theoretical foundations and practical applications in the context of educational AI. A valuable resource for researchers and educators, as well as for policymakers focused on promoting equitable and transparent learning environments.


List of contents










Table of Contents
Preface
Authors
Contributors
Section I. Explainable Learner Models: An Overview
1. Trustworthy AI for Adaptive Learning
2. Explainable Learner Models: Concepts, Classifications, and Datasets
3. Construction and Interpretation of Explainable Models: A Case Study on BKT
Section II. Research on Ante-hoc Explainability Learner Models
4. Interpretable Cognitive State Prediction via Temporal Fuzzy Cognitive Map
5. Improving the performance and explainability of knowledge tracing via Markov blanket
6. Knowledge Tracing within Single Programming Practice Using Problem-Solving Process Data
Section III. Research on Post-hoc Explainability Learner Models
7. Understanding the relationship between computational thinking and computational participation
8. Understanding students' backtracking behaviour in digital textbooks: a data-driven perspective
Section IV. Toward Trustworthy Adaptive Learning
9. Frameworks for Explainable Learner Models
10. Frameworks for Trustworthy AI for Adaptive Learning
Index


About the author










Bo Jiang is an associate professor at East China Normal University, China. His research interests include intelligent tutoring technologies, computational thinking education, and AI education. He holds academic positions as an executive committee member of the Asia-Pacific Society for Computers in Education (APSCE) and a youth committee member of the Chinese Association for Artificial Intelligence.


Summary

This book offers an in-depth exploration of explainable learner models, presenting theoretical foundations and practical applications in the context of educational AI. A valuable resource for researchers and educators, as well as for policymakers focused on promoting equitable and transparent learning environments.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.