Fr. 179.00

Design Load Allowables for Composite Plates Exposed to Thermomechanical Loads

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Current methodologies used to design lightweight structures made of CFRP materials under static thermomechanical conditions often rely on simplified approaches. In particular, the temperature-related design case is typically described by assuming a uniform distribution of the worst-case temperature, which is the maximum allowable temperature that can occur simultaneously with the mechanical loads. However, these simplifications can lead to a weight penalty due to their over-conservatism. To address these limitations, the present work describes a novel analysis methodology that accounts for spatial distributions of temperature. This approach allows for a more detailed understanding of the structural behavior under these demanding conditions. As a result, existing load-carrying potentials can be identified and used to fully exploit the advantage of CFRP structures. Moreover, this methodology generates an improved understanding of the variability in the structural behavior under such scattering thermal conditions, which can increase confidence and reliability in the design process and lead to reduce related margins of safety. To accurately model the mechanical behavior of structures at distributed temperature conditions, it is essential to consider the temperature-dependent properties of the material. These properties describing the elastic and strength behavior of the unidirectional ply, are derived from typical material characterization performed at various temperatures. In this approach, a phenomenological model is used to account for the temperature dependence of the material. This model is fitted to the characterization results to consider the individual magnitude of the properties. The resulting property allowables contain typical material uncertainties, as well as the model uncertainty that is defined by assessing the errors between the model and measurement. To determine the stability and strength behavior of structures under different thermal conditions, Finite-Element-Analysis (FEA) is utilized. Variations of thermal load distributions are analyzed to consider the uncertainty in opertational conditions qualitatively and quantitatively. A series of such analyses is conducted at different thermal conditions to determine design values such as buckling loads or failure loads. Based on this data, surrogate modeling leads to design value formulation as a function of the temperature distribution. This approach provides a more comprehensive and reliable assessment of the structural behavior under different thermal conditions and enables to either determine more realistic worst-case behavior or enhanced design values such as probabilistic structural allowables. The final part of the thesis demonstrates the developed analysis methodology on representative skin field structures. The comparison to the common analysis procedure highlights the potentials of structural load carrying capability and reveals deficiencies in the present approach. Thus, a detailed modelling of the temperature distribution leads additionally to an improved reliability of the design process and more efficient and robust structures.

List of contents

Introduction.- Problem description and focus of investigation.- Characterization of composite properties at different temperatures.- Modelling of temperature dependent composite properties.- Methods for analysis at distributed temperatures.- Structural Analysis and Assessment.- Summary.

About the author

Martin Liebisch is working at the German Aerospace Center (DLR) since 2014. His work was initially focusing the analysis of composite curing analysis. Later his scope changed to the topic of thermomechanical analysis and the behavior of composites under fire exposure. Further work focuses on numerical and experimental investigation of hydrogen storage vessels.

Product details

Authors Martin Liebisch
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.12.2024
 
EAN 9783031713514
ISBN 978-3-0-3171351-4
No. of pages 200
Illustrations XVIII, 200 p. 129 illus., 117 illus. in color.
Series Mechanics and Adaptronics
Subjects Natural sciences, medicine, IT, technology > Technology > General, dictionaries

Konstruktion, Entwurf, Materialwissenschaft, Engineering Design, Engineering mathematics, materials engineering, Surrogate Modelling, Carbon fiber reinforced polymers, Temperature distribution, Material modelling, Lightweight composite structures, Probabilistic analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.