Fr. 136.00

Modal Testing - Theory, Practice and Application

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more

List of contents










Chapter 1: Overview. 1.1 Introduction to Modal Testing.
1.2 Applications of Modal Testing.
1.3 Philosophy of Modal Testing.
1.4 Summary of Theory.
1.5 Summary of Measurement Methods.
1.6 Summary of Modal Analysis Processes.
1.7 Review of Test Procedures, and Levels.
1.8 Terminology and Notation.
Chapter 2: Theoretical Basis.
2.1 Introduction.
2.2 Single-Degree-of-Freedom (SDOF) System Theory.
2.3 Presentation and Properties of FRF Data for SDOF System.
2.4 Undamped Multi-Degree-of-Freedom (MDOF) Systems.
2.5 MDOF Systems with Proportional Damping.
2.6 MDOF Systems with Structural (Hysteretic) Damping - General Case.
2.7 MDOF Systems with Viscous Damping - General Case.
2.8 Modal Analysis of Rotating Structures.
2.9 Complex Modes.
2.10 Characteristics and Presentation of MDOF FRF Data.
2.11 Non-sinusoidal Vibration and FRF Properties.
2.12 Complete and Incomplete Models.
2.13 Sensitivity of Models.
2.14 Analysis of Weakly Non-linear Structures.
Chapter 3: Response Function Measurement Techniques.
3.1 Introduction and Test Planning.
3.2 Basic Measurement System.
3.3 Structure Preparation.
3.4 Excitation of the Structure.
3.5 Transducers and Amplifiers.
3.6 Analysers.
3.7 Digital Signal Processing.
3.8 Use of Different Excitation Signals.
3.9 Calibration.
3.10 Mass Cancellation.
3.11 Rotational FRF Measurement.
3.12 Measurements on Non-Linear Structures.
3.13 Multi-point Excitation Methods.
3.14 Measuring FRFs and ODSs using the Scanning LDV.
Chapter 4: Modal Parameter Extraction Methods.
4.1 Introduction.
4.2 Preliminary Checks of FRF Data.
4.3 SDOF Modal Analysis Methods.
4.4 SDOF Modal Analysis in the Frequency Domain (SISO).
4.5 Global Modal Analysis Methods in the Frequency Domain.
4.6 MDOF Modal Analysis in the Time Domain.
4.7 Modal Analysis of Non-Linear Structures.
4.8 Concluding Comments.
Chapter 5: Derivation of Mathematical Models.
5.1 Introduction.
5.2 Modal Models.
5.3 Refinement of Modal Models.
5.4 Display of Modal Model.
5.5 Response Models.
5.6 Spatial Models.
5.7 Mobility Skeletons and System Models.
Chapter 6: Applications.
6.1 Introduction.
6.2 Comparison of and Correlation of Experiment and Prediction.
6.3 Adjustment or Updating of Models.
6.4 Coupled and Modified Structure Analysis.
6.5 Response Prediction and Force Determination.
6.6 Test Planning.
Notation.
Appendices: A Maths Toolkit.
1. Use of Complex Algebra to Describe Harmonic Vibration.
2. Review of Matrix Notation and Properties.
3. Matrix Decomposition and the SVD.
4. Transformations of Equations of Motion between Stationary and Rotating Axes.
5. Fourier Analysis.
References.
Index.


About the author










David John Ewins FRS FREng is a British mechanical engineer, and Director of the Bristol Laboratory for Advanced Dynamics Engineering at University of Bristol.

Product details

Authors D J Ewins, D. J. Ewins
Publisher Wiley
 
Languages English
Product format Hardback
Released 20.09.2000
 
EAN 9780863802188
ISBN 978-0-86380-218-8
No. of pages 592
Dimensions 160 mm x 239 mm x 36 mm
Weight 998 g
Series Mechanical Engineering Research Studies: Engineering Dynamics Series
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Mechanics, acoustics

Materials science, TECHNOLOGY & ENGINEERING / Materials Science / General, Dynamics & vibration

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.