Fr. 96.00

Portfolio Optimization

English · Paperback / Softback

Shipping usually within 3 to 5 weeks

Description

Read more










Eschewing a more theoretical approach, Portfolio Optimization shows how the mathematical tools of linear algebra and optimization can quickly and clearly formulate important ideas on the subject. This practical book extends the concepts of the Markowitz "budget constraint only" model to a linearly constrained model. It explains


List of contents










Optimization. The Efficient Frontier. The Capital Asset Pricing Model. Sharpe Ratios and Implied Risk-Free Returns. Quadratic Programming Geometry. A QP Solution Algorithm. Portfolio Optimization with Linear Inequality Constraints. Determination of the Entire Efficient Frontier. Sharpe Ratios under Constraints and Kinks. Appendix. References.


About the author










Michael J. Best is a professor in the Department of Combinatorics and Optimization at the University of Waterloo in Ontario, Canada. He received his Ph.D. from the Department of Industrial Engineering and Operations Research at the University of California, Berkeley. Dr. Best has authored over 37 papers on finance and nonlinear programming and co-authored a textbook on linear programming. He also has been a consultant to Bank of America, Ibbotson Associates, Montgomery Assets Management, Deutsche Bank, Toronto Dominion Bank, and Black Rock-Merrill Lynch.


Summary

Eschewing a more theoretical approach, Portfolio Optimization shows how the mathematical tools of linear algebra and optimization can quickly and clearly formulate important ideas on the subject. This practical book extends the concepts of the Markowitz "budget constraint only" model to a linearly constrained model. It explains

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.