Fr. 76.00

Multiple Factor Analysis By Example Using R

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also includes examples of applications and details of how to implement MFA using an R package (FactoMineR).
The first two chapters cover the basic factorial analysis methods of principal component analysis (PCA) and multiple correspondence analysis (MCA). The next chapter discusses factor analysis for mixed data (FAMD), a little-known method for simultaneously analyzing quantitative and qualitative variables without group distinction. Focusing on MFA, subsequent chapters examine the key points of MFA in the context of quantitative variables as well as qualitative and mixed data. The author also compares MFA and Procrustes analysis and presents a natural extension of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of matrix calculation and metric spaces used in the book.


List of contents










Principal Component Analysis. Multiple Correspondence Analysis. Factor Analysis for Mixed Data. Weighting Groups of Variables. Comparing Clouds of Partial Individuals. Factors Common to Different Groups of Variables. Comparing Groups of Variables and Indscal Model. Qualitative and Mixed Data. Multiple Factor Analysis and Procrustes Analysis. Hierarchical Multiple Factor Analysis. Matrix Calculus and Euclidean Vector Space. Bibliography.


About the author










Jérôme Pagès is a professor of statistics at Agrocampus (Rennes, France), where he heads the Laboratory of Applied Mathematics (LMA²).


Summary

Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of the methodology, this book brings together the theoretical and methodological aspects of MFA. It also covers principal component analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.