Read more
The
Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts.
List of contents
Overview and preliminaries. Computer-assisted Theorem Proving in Synthetic Geometry. Coordinate-Free Theorem Proving in Incidence Geometry. Special positions of frameworks and the Grassmann-Cayley Algebra. From Molecular Distance Geometry to Conformal Geometric Algebra. Tree-decomposable and Underconstrained Geometric Constraint Problems. Geometric Constraint Decomposition: The General Case. Dimensional and Universal Rigidities of Bar Frameworks. Computations of metric/cut polyhedra and their relatives. Cayley Configuration Spaces. Constraint Varieties in Mechanism Science. Real Algebraic Geometry for Geometric Constraints. Polyhedra in 3-Space. Tensegrity. Geometric Conditions of Rigidity in Nongeneric settings. Generic Global Rigidity in General Dimension. Change of Metrics in Rigidity Theory. Planar Rigidity. Inductive constructions for combinatorial local and global rigidity. Rigidity of Body-bar-hinge Frameworks. Global rigidity of two-dimensional frameworks. Point-line frameworks. Generic rigidity of body-and-cad frameworks. Rigidity with polyhedral norms. Combinatorial rigidity of symmetric and periodic frameworks.
About the author
Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. http://www.cise.ufl.edu/~sitharam
Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. http://minerva.cs.mtholyoke.edu/
Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan. http://www.mtholyoke.edu/~jsidman/
Summary
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts.