Fr. 158.00

Stochastic Thermodynamic Treatment of Thermal Anisotropy

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This thesis advances our understanding of how thermal anisotropy can be exploited to extract work through a mechanism that is quite distinct from the classical Carnot heat engine. Anisotropy, the presence of thermal or chemical gradients, is ubiquitous in the real world and powers the cascade of processes that sustain life. The thesis quantifies, for the first time, the maximum amount of power and efficiency that a suitable mechanism (a Brownian gyrator) can achieve in such conditions. An important contribution at the center of the thesis is to lay out a geometric framework that brings out the importance of an isoperimetric problem to analyze and quantify optimal operation of thermodynamic engines that harvest energy when simultaneously in contact with several heat baths. Fundamental bounds are derived via isoperimetric inequalities which capture the trade-off between work and dissipation that accrue during thermodynamic cycles. A geometric theory that allows such insights is explained first - the theory of optimal mass transport - followed by rudiments of stochastic thermodynamics that allow for quantification of work and entropy production during finite-time thermodynamic transitions. The thesis further explores entropy production due to heat flowing between heat baths of different temperature through the system dynamics, and concludes with analysis as a proof-of-concept of an autonomous engine that harvests energy from a thermal gradient to continuously produce work in a stable limit cycle operation.

List of contents

Chapter 1: Introduction to Optimal Mass Transport.- Chapter 2: Introduction to Stochastic Thermodynamics.- Chapter 3: Stochastic thermodynamic systems subject to anisotropic fluctuations.- Chapter 4: Energy harvesting from anisotropic temperature fields.- Chapter 5: Minimal entropy production in anisotropic temperature fields.- Chapter 6: Application: thermodynamic engine powered by anisotropic fluctuations.- Chapter 7: Conclusion.

Product details

Authors Olga Movilla Miangolarra
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 11.10.2024
 
EAN 9783031680656
ISBN 978-3-0-3168065-6
No. of pages 159
Dimensions 155 mm x 13 mm x 235 mm
Weight 385 g
Illustrations XVII, 159 p. 32 illus., 30 illus. in color.
Series Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Thermodynamics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.