Fr. 52.50

Tensorrechnung

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more










Die Tensorrechnung entstand Anfang des 19. Jahrhunderts. Sie wird vor al­ lem in der Physik und im engeren Sinn in der Kontinuumsmechanik, in der auch die nicht-newtonschen Fluide mit behandelt werden, angewendet. Der Tensorkalkül ist eine wichtige Methode, um physikalisch-technische Vorgänge mathematisch zu formulieren. Mit ihm lassen sich die Grundgleichungen der Physik universell und für die numerische Behandlung geeignet darstellen. Die physikalischen Vorgänge sind dabei unabhängig von der Wahl des benutzten Koordinatensystems. Das Koordinatensystem paßt man oft den Rändern des zu lösenden Problems an. Der Tensorkalkül eignet sich auch zur Beschreibung von Stoffgleichungen [Bac83] der Materialien und Fluide, die sich nicht linear und nicht isotrop ver­ halten und bei denen große Verformungsgeschwindigkeiten oder Verformungs­ beschleunigungen auftreten. Während in der Physik die tensorielle Darstellung der Gleichungen schon seit langem üblich ist, setzt sie sich in der technischen Fachliteratur gegenwärtig erst durch. Das vorliegende Buch geht auf Anregungen zurück, die ich zum einen aus Vorle­ sungen meines verehrten Lehrers, Herrn Prof. em. Dr. W. Schultz-Piszachich, und zum anderen aus meiner eigenen Lehrtätigkeit an der Otto-von-Guericke­ Universität Magdeburg erhielt. Als Einführung in die Tensorrechnung erhebt es selbstverständlich keinen Anspruch auf Vollständ.igkeit. Auf umfangreiche technische Anwendungen der Tensorrechnung wurde bewußt verzichtet; im Li­ teraturverzeichnis wird der Leser auf weitergehende und umfassendere Darstel­ lungen verwiesen.

List of contents

1 Tensorielle Aspekte der Vektoralgebra.- 1.1 Vektoren.- 2 Einführung beliebiger Grundsysteme.- 2.1 Das beliebige Grundsystem.- 2.2 Operationen in Komponentendarstellung.- 3 Tensoren.- 3.1 Tensoroperationen.- 3.2 Tensoren 2. Stufe.- 3.3 Die Punkttransformation.- 3.4 Die Hauptachsentransformation.- 3.5 Tensoren k-ter Stufe.- 3.6 Der antisymmetrische Tensor 3. Stufe.- 3.7 Der Kronecker-Tensor 6. Stufe.- 4 Beliebige ortsabhängige Koordinatensysteme.- 4.1 Wechsel zwischen Koordinatensystemen.- 4.2 Gradient, Divergenz und Rotation von Tensorfeldern.- 4.3 Beispiele für die Differentiation von Tensorfeldern.- 4.4 Integralsätze.- 4.5 Eine Anwendung der Integralsätze.- 5 Lösungen und Lösungshinweise.- Literatur.

Product details

Authors Hans Karl Iben
Publisher Vieweg+Teubner
 
Languages German
Product format Paperback / Softback
Released 01.10.1995
 
EAN 9783815420836
ISBN 978-3-8154-2083-6
No. of pages 180
Dimensions 157 mm x 11 mm x 236 mm
Illustrations 180 S. 20 Abb.
Series Mathematik für Ingenieure und Naturwissenschaftler
Subject Natural sciences, medicine, IT, technology > Technology > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.