Fr. 136.00

Quantitative Portfolio Optimization - Advanced Techniques and Applications

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










PRAISE FOR
QUANTITATIVE PORTFOLIO OPTIMIZATIONOPTIMIZATION "This book provides an excellent exposition on portfolio optimization, serving not only as a self-contained guide to this important topic, but also modernizing the field with the latest advances in battle-tested machine learning approaches. The book is well structured and application centric. This is a must read for every quantitative portfolio manager."
- Matthew Dixon, FRM, Ph.D., Associate Professor of Applied Math at the Illinois Institute of Technology and an Affiliate Associate Professor of the Stuart School of Business "Quantitative Portfolio Optimization: Advanced Techniques and Applications is an essential guide for anyone seeking to navigate the complex world of modern portfolio management. This book masterfully blends the foundational principles of portfolio theory with cutting-edge advancements in risk management, dynamic models, and control systems. Its integration of machine learning and deep learning offers readers a forward-looking perspective on leveraging AI-driven techniques for optimization. What truly sets this book apart is its comprehensive approach. From theoretical insights to practical backtesting applications, it equips professionals, researchers, and students with the tools to design and refine robust investment strategies. Whether you're delving into the nuances of risk modelling or exploring dynamic portfolio control with the latest AI methodologies, this text is an invaluable resource. This book isn't just about managing portfolios-it's about mastering the art and science behind it. Highly recommended for anyone aiming to achieve excellence in quantitative finance and portfolio optimization."
-Daniel Bloch, Director, Quant Finance Limited

List of contents










Contents
 
Preface  xiii
Acknowledgements  xv
About the Authors  xvii
 
CHAPTER  1
 
Introduction  1
 
1.1 Evolution of Portfolio Optimization 1
1.2 Role of Quantitative Techniques 1
1.3 Organization of the Book 4
Contents

Preface  xiii
Acknowledgements  xv
About the Authors  xvii

CHAPTER  1
 
Introduction  1
 
1.1 Evolution of Portfolio Optimization 1
1.2 Role of Quantitative Techniques 1
1.3 Organization of the Book 4
 
CHAPTER  2
 
History of Portfolio Optimization 7
 
2.1 Early beginnings 7
2.2 Harry Markowitz's Modern Portfolio Theory (1952) 9
2.3 Black-Litterman Model (1990s) 13
2.4 Alternative Methods: Risk Parity, Hierarchical Risk Parity and Machine Learning  19
     2.4.1 Risk Parity  19
     2.4.2 Hierarchical Risk Parity  26
     2.4.3 Machine Learning  27
2.5 Notes  31

PART ONE
 
Foundations of Portfolio Theory
 
CHAPTER 3
 
Modern Portfolio Theory  35
 
3.1 Efficient Frontier and Capital Market Line  35
      3.1.1 Case Without Riskless Asset  35
      3.1.2 Case With a Riskless Asset  41
3.2 Capital Asset Pricing Model  48
      3.2.1 Case Without Riskless Asset  48
      3.2.2 Case With a Riskless Asset  52
3.3 Multifactor Models  54
3.4 Challenges of Modern Portfolio Theory  59
      3.4.1 Estimation Techniques in Portfolio Allocation  60
      3.4.2 Non-Elliptical Distributions and Conditional Value-at-Risk (CVaR)  63
3.5 Quantum Annealing in Portfolio Management  65
3.6 Mean-Variance Optimization with CVaR Constraint  67
      3.6.1 Problem Formulation  67
      3.6.2 Optimization Problem  68
      3.6.3 Clarification of Optimization Classes  68
      3.6.4 Numerical Example  69
3.7 Notes  70

CHAPTER  4
 
Bayesian Methods in Portfolio Optimization   73
 
4.1 The Prior  75
4.2 The Likelihood  79
4.3 The Posterior  80
4.4 Filtering  83
4.5 Hierarchical Bayesian Models  87
4.6 Bayesian Optimization  89
      4.6.1 Gaussian Processes in a Nutshell  90
     4.6.2 Uncertainty Quantification and Bayesian Decision Theory  94
4.7 Applications to Portfolio Optimization  96
     4.7.1 GP Regression for Asset Returns  96
     4.7.2 Decision Theory in Portfolio Optimization  96
     4.7.3 The Black-Litterman Model  99
4.8 Notes  103

PART TWO
 
Risk Management
 
CHAPTER 5
 
Risk Models and Measures  107
 
5.1 Risk Measures  107
5.2 VaR and CVaR  109
      5.2.1 VaR  110
     5.2.2 CVaR  112
5.3 Estimation Methods  116
     5.3.1 Variance-Covariance Method  116
     5.3.2 Historical Simulation  116
     5.3.3 Monte Carlo Simulation  117
5.4 Advanced Risk Measures: Tail Risk and Spectral Measures  118
     5.4.1 Tail Risk Measures  118
     5.4.2 Spectral Measures  120
5.5 Notes 123

CHAPTER 6
 
Factor Models and Factor Investing  125
 
6.1 Single and Multifactor Models  126
      6.1.1 Statistical Models  127
      6.1.2 Macroeconomic Models  128
      6.1.3 Cross-sectional Models  130
6.2 Factor Risk and Performance Attribution  135
6.3 Machine Learning in Factor Investing  141
6.4 Notes  144
 
CHAPTER 7
 
Market Impact, Transaction Costs, and Liquidity  145
 
7.1 Market Impact Models  145
7.2 Modeling Transaction Costs  148
      7.2.1 Single Asset  151
      7.2.2 Multiple Assets  154
7.3 Optimal Trading Strategies  155
      7.3.1 Mei, DeMiguel, and Nogales (2016)  156
      7.3.2 Skaf and Boyd (2009)  159
7.4 Liquidity Considerations in Portfolio Optimization  161
      7.4.1 MV and Liquidity  162
      7.4.2 CAPM and Liquidity  163
      7.4.3 APT and Liquidity  165
7.5 Notes  167

PART THREE
 
Dynamic Models and Control
 
CHAPTER 8
 
Optimal Control  171
 
8.1 Dynamic Programming  171
8.2 Approximate Dynamic Programming  171
8.3 The Hamilton-Jacobi-Bellman Equation  172
8.4 Sufficiently Smooth Problems  174
8.5 Viscosity Solutions  176
8.6 Applications to Portfolio Optimization  180
      8.6.1 Classical Merton Problem  180
      8.6.2 Multi-asset Portfolio with Transaction Costs  181
      8.6.3 Risk-sensitive Portfolio Optimization  183
      8.6.4 Optimal Portfolio Allocation with Transaction Costs  184
      8.6.5 American Option Pricing  184
      8.6.6 Portfolio Optimization with Constraints  184
      8.6.7 Mean-variance Portfolio Optimization  185
      8.6.8 Schödinger Control in Wealth Management  185
8.7 Notes  187

CHAPTER 9
 
Markov Decision Processes  189
 
9.1 Fully Observed MDPs  191
9.2 Partially Observed MDPs  192
9.3 Infinite Horizon Problems  194
9.4 Finite Horizon Problems  198
9.5 The Bellman Equation  200
9.6 Solving the Bellman Equation  203
9.7 Examples in Portfolio Optimization  205
      9.7.1 An MDP in Multi-asset Allocation with Transaction Costs  205
      9.7.2 A POMDP for Asset Allocation with Regime Switching  205
      9.7.3 An MDP with Continuous State and Action Spaces for Option Hedging with Stochastic Volatility  206
9.8 Notes  207
 
CHAPTER  10
 
Reinforcement Learning  209
 
10.1 Connections to Optimal Control  211
       10.1.1 Policy Iteration  212
       10.1.2 Value Iteration  214
       10.1.3 Continuous vs. Discrete Formulations  215
10.2 The Environment and The Reward Function  217
         10.2.1 The Environment  217
         10.2.2 The Reward Function  220
10.3 Agents Acting in an Environment  223
10.4 State-Action and Value Functions  225
        10.4.1 Value Functions  226
        10.4.2 Gradients and Policy Improvement  227
10.5 The Policy  230
10.6 On-Policy Methods  233
10.7 Off-Policy Methods  235
10.8 Applications to Portfolio Optimization  238
       10.8.1 Mean-variance Optimization  238
       10.8.2 Reinforcement Learning Comparison with Mean-variance Optimization  239
       10.8.3 G-Learning and GIRL  241
       10.8.4 Continuous-time Penalization in Portfolio Optimization  244
       10.8.5 Reinforcement Learning for Utility Maximization  246
       10.8.6 Continuous-time Portfolio Optimization with Transaction Costs  246
10.9 Notes  247

PART FOUR
 
Machine Learning and Deep Learning
 
CHAPTER 11
 
Deep Learning in Portfolio Management  253
 
11.1 Neurons and Activation Functions  253
11.2 Neural Networks and Function Approximation  256
11.3 Review of Some Important Architectures  259
11.4 Physics-Informed Neural Networks  269
11.5 Applications to Portfolio Optimization  276
        11.5.1 Dynamic Asset Allocation Using the Heston Model  276
        11.5.2 Option-Based Portfolio Insurance Using the Bates Model  277
        11.5.3 Factor Learning Approach to Generative Modeling of Equities  278
11.6 The Case for and Against Deep Learning  280
11.7 Notes  282
 
CHAPTER 12
 
Graph-based Portfolios  285
 
12.1 Graph Theory-Based Portfolios  285
       12.1.1 Literature Review  285
12.2 Graph Theory Portfolios: MST and TMFG  285
       12.2.1 Equations and Formulas  286
       12.2.2 Results  287
12.3 Hierarchical Risk Parity  289
12.4 Notes  294

CHAPTER 13
 
Sensitivity-based Portfolios  295
 
13.1 Modeling Portfolios Dynamics with PDEs  296
13.2 Optimal Drivers Selection: Causality and Persistence  297
13.3 AAD Sensitivities Approximation  303
        13.3.1 Optimal Network Selection  304
        13.3.2 Sensitivity Analysis  304
        13.3.3 Sensitivity Distance Matrix  304
13.4 Hierarchical Sensitivity Parity  307
13.5 Implementation  307
        13.5.1 Datasets  307
        13.5.2 Experimental Setup  308
        13.5.3 Short-to-medium Investments  309
        13.5.4 Long-term Investments  312
13.6 Conclusion  315

PART FIVE
 
Backtesting
 
CHAPTER  14
 
Backtesting in Portfolio Management  319
 
14.1 Introduction  319
14.2 Data Preparation and Handling  319
14.3 Implementation of Trading Strategies  320
14.4 Types of Backtests  321
        14.4.1 Walk-forward Backtest  321
        14.4.2 Resampling Method  321
        14.4.3 Monte Carlo Simulations and Generative Models  321
14.5 Performance Metrics  322
14.6 Avoiding Common Pitfalls  323
14.7 Advanced Techniques  323
14.8 Case Study: Applying Backtesting to a Real-World Strategy  324
14.9 Impact of Market Conditions on Backtest Results  324
14.10 Integration with Portfolio Management  325
14.11 Tools and Software for Backtesting  325
14.12 Regulatory Considerations  326
14.13 Conclusion  326
 
CHAPTER  15
 
Scenario Generation  329
 
15.1 Historical Scenarios  329
15.2 Bootstrapping Scenarios  330
15.3 Copula-Based Scenarios  330
15.4 Risk Factor Model-Based Scenarios  330
15.5 Time Series Model Scenarios  331
15.6 Variational Autoencoders  331
15.7 Generative Adversarial Networks (GANs)  332
 
Appendix 333
 
A.1 Software and Tools for Portfolio Optimization  333
 
Bibliography  335
 
Index  357


Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.