Sold out

Harmonic Analysis on Symmetric Spaces-Higher Rank Spaces, Positive Definite Matrix Space and Generalizations

English · Paperback / Softback

Description

Read more

This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices.
Manycorrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St.
P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains.

Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.

List of contents

Part I: The Space Pn of Positive n x n Matrices.- Part II: The General Noncompact Symmetric Space.

Summary

This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincaré Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices.
Manycorrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank.  Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St.
P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains.

Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups Γ (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant ±1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Report

"Advanced graduate students and beginners in harmonic analysis on symmetric spaces are surely motivated and attracted by abundant examples, relevant history, and exercises. Excellent references in each section are useful for experts." (Takeshi Kawazoe, Mathematical Reviews, August, 2017)
"It is very nice to have available, now, the second, updated version of the entire set ... . Audrey Terras has done the mathematical community (and not just number theorists and modular formers) a great service: these books are a major contribution on several fronts, including the pedagogical one. They are of course also excellent references for various mathematical themes that are otherwise scattered all through the recent literature." (Michael Berg, MAA Reviews, maa.org, July, 2016)

Product details

Authors Audrey Terras
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.04.2018
 
EAN 9781493980420
ISBN 978-1-4939-8042-0
No. of pages 487
Dimensions 155 mm x 27 mm x 235 mm
Weight 756 g
Illustrations XV, 487 p. 41 illus., 21 illus. in color.
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

B, Statistics, geometry, Combinatorics, Mathematics and Statistics, Applications of Mathematics, Statistical Theory and Methods, Discrete Mathematics, Number Theory, Probability & statistics, Combinatorics & graph theory, Abstract Harmonic Analysis, Harmonic analysis, Engineering mathematics, Applied mathematics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.