Fr. 96.00

Asymptotic Expansions and Summability - Application to Partial Differential Equations

English · Paperback / Softback

Shipping usually within 4 to 7 working days

Description

Read more

This book provides a comprehensive exploration of the theory of summability of formal power series with analytic coefficients at the origin of Cn, aiming to apply it to formal solutions of partial differential equations (PDEs). It offers three characterizations of summability and discusses their applications to PDEs, which play a pivotal role in understanding physical, chemical, biological, and ecological phenomena.
Determining exact solutions and analyzing properties such as dynamic and asymptotic behavior are major challenges in this field. The book compares various summability approaches and presents simple applications to PDEs, introducing theoretical tools such as Nagumo norms, Newton polygon, and combinatorial methods. Additionally, it presents moment PDEs, offering a broad class of functional equations including classical, fractional, and q-difference equations. With detailed examples and references, the book caters to readers familiar with the topics seeking proofs or deeper understanding, as well as newcomers looking for comprehensive tools to grasp the subject matter. Whether readers are seeking precise references or aiming to deepen their knowledge, this book provides the necessary tools to understand the complexities of summability theory and its applications to PDEs.

List of contents

Part I Asymptotic expansions.- Taylor expansions.- Gevrey formal power series.- Gevrey asymptotics.- Part II Summability.k-summability: definition and first algebraic properties.- First characterization of the k-summability: the successive derivatives.- Second characterization of the k-summability: the Borel-Laplace method.- Part III Moment summability.- Moment functions and moment operators.- Moment-Borel-Laplace method and summability.- Linear moment partial differential equations.

About the author










Pascal Remy is a research associate at the Laboratoire de Mathématiques de Versailles, at the University of Versailles Saint-Quentin (France). His main interest is the theory of summation of divergent formal power series (including Gevrey estimates, summability, multi-summability, and Stokes phenomenon). His research extends to applications such as formal solutions of meromorphic linear differential equations, partial differential equations and integro-differential equations, both linear and nonlinear.


Product details

Authors Pascal Remy
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 25.08.2024
 
EAN 9783031590931
ISBN 978-3-0-3159093-1
No. of pages 246
Dimensions 155 mm x 14 mm x 235 mm
Weight 400 g
Illustrations XIII, 246 p. 28 illus.
Series Lecture Notes in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.