Fr. 198.00

Statistical Properties of Undulator Radiation - Classical and Quantum Effects

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This thesis presents significant advances in the understanding of the statistical properties of undulator radiation via two experiments carried out in the Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab. The first experiment studied the turn-to-turn fluctuations in the power of the radiation generated by an electron bunch. The magnitude of these fluctuations depends on the 6D phase-space distribution of the electron bunch. The author presents the most complete theoretical description of this effect to date, and shows that it can be used to measure some electron bunch parameters (e.g. its size and divergence). Remarkably, the performance of this technique improves for smaller bunches and shorter radiation wavelengths and it may, therefore, be particularly beneficial for existing state-of-the-art and next-generation low-emittance high-brightness x-ray synchrotron light sources. In the second experiment, a single electron was stored in the ring, emitting a photon only once per several hundred turns. In this regime, any classical interference-related collective effects were eliminated, and the quantum fluctuations could be studied in detail to search for possible deviations from the expected Poissonian photon statistics. In addition, the photocount arrival times were used to track the longitudinal motion of a single electron and to compare it with simulations. This served as an independent measurement of several dynamical parameters of the storage ring.

List of contents

Chapter 1. Introduction.- Chapter 2. Derivation of statistical properties of undulator radiation.- Chapter 3. Measurements with a bunch of electrons in the iota ring.- Chapter 4. Measurements with a single electron in the iota ring.- Chapter 5. Conclusions.

About the author










Ihar received his bachelor's degree in physics from the Belarusian State University in 2017. He completed his PhD program in particle accelerator physics at the University of Chicago in 2021. His thesis research was carried out at Fermilab's Integrable Optics Test Accelerator storage ring, where he studied the statistical properties of the undulator radiation generated by a bunch of electrons and by a single electron circulating in the ring. Currently, Ihar is an assistant physicist at the Advanced Photon Source in Argonne National Laboratory. His research is focused on applications of machine learning for accelerator tuning, control, and anomaly detection.

Product details

Authors Ihar Lobach
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 10.02.2024
 
EAN 9783031232756
ISBN 978-3-0-3123275-6
No. of pages 101
Dimensions 155 mm x 6 mm x 235 mm
Illustrations XII, 101 p. 43 illus., 41 illus. in color.
Series Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Atomic physics, nuclear physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.