Fr. 266.00

Bayesian Machine Learning in Geotechnical Site Characterization

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more










This presents recent advancements in probabilistic geotechnical site characterization. It reviews probability theories and models for cross correlation and spatial correlation, and presents methods for Bayesian parameter estimation and prediction. Use of these methods is demonstrated with geotechnical site characterization examples.

List of contents










1. Bayesian Approach. 2. Review of Probability and Models. 3. Bayesian Parameter Estimation and Prediction. 4. Geotechnical Data and Bayesian Modeling. 5. Full-scale Real Case Study.


About the author










Jianye Ching is Distinguished Professor at National Taiwan University and Convener of the Civil & Hydraulic Engineering Program of the Ministry of Science and Technology of Taiwan. He is Chair of ISSMGE's TC304 (risk), Chair of Geotechnical Safety Network (GEOSNet), and Managing Editor of the journal Georisk.


Summary

This presents recent advancements in probabilistic geotechnical site characterization. It reviews probability theories and models for cross correlation and spatial correlation, and presents methods for Bayesian parameter estimation and prediction. Use of these methods is demonstrated with geotechnical site characterization examples.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.