Fr. 120.00

From Polynomials to Sums of Squares

English · Paperback / Softback

Shipping usually within 3 to 5 weeks

Description

Read more

List of contents

Preface -- 1 Polynomials in one variable -- 1.1 Polynomials with rational coefficients -- 1.2 Polynomials with coefficients in Zp -- 1.3 Polynomial division -- 1.4 Common divisors of polynomials -- 1.5 Units, irreducibles and the factor theorem -- 1.6 Factorization into irreducible polynomials -- 1.7 Polynomials with integer coefficients -- 1.8 Factorization in Zp [x] and applications to Z[x] -- 1.9 Factorization in Q[x] -- 1.10 Factorizing with the aid of the computer -- Summary of chapter 1 -- Exercises for chapter 1 -- 2 Using polynomials to make new number fields -- 2.1 Roots of irreducible polynomials -- 2.2 The splitting field of xP" - x in Zp [x] -- Summary of chapter 2 -- Exercises for chapter 2 -- 3 Quadratic integers in general and Gaussian integers in particular -- 3.1 Algebraic numbers -- 3.2 Algebraic integers -- 3.3 Quadratic numbers and quadratic integers -- 3.4 The integers of Q(-J=T) -- 3.5 Division with remainder in Z[i] -- 3.6 Prime and composite integers in Z[i] -- Summary of chapter 3 -- Exercises for chapter 3 -- 4 Arithmetic in quadratic domains -- 4.1 Multiplicative norms -- 4.2 Application of norms to units in quadratic domains -- 4.3 Irreducible and prime quadratic integers -- 4.4 Euclidean domains of quadratic integers -- 4.5 Factorization into irreducible integers in quadratic -- domains -- Summary of chapter 4 -- Exercises for chapter 4 -- 5 Composite rational integers and sums of squares -- 5.1 Rational primes -- 5.2 Quadratic residues and the Legendre symbol -- 5.3 Identifying the rational primes that become composite in a quadratic domain -- 5.4 Sums of squares -- Summary of chapter 5 -- Exercises for chapter 5 -- Appendices -- 1 Abstract perspectives -- 1.1 Groups -- 1.2 Rings and integral domains -- 1.3 Divisibility in integral domains -- 1.4 Euclidean domains and factorization into irreducibles -- 1.5 Unique factorization in Euclidean domains -- 1.6 Integral domains and fields -- 1.7 Finite fields -- 2 The product of primitive polynomials -- 3 The Mobius function and cyclotomic polynomials -- 4 Rouches theorem -- 5 Dirichlet's theorem and Pell's equation -- 6 Quadratic reciprocity -- References – Index.

About the author










T.H. Jackson

Summary

Describes a journey through the algebra and number theory based around the central theme of factorization. Providing basic knowledge of rational polynomials, this book introduces other integral domains and sums of squares of integers. It offers illustrations that feature specific examples. It contains practical activities involving the computer.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.