Fr. 69.00

Partial Differential Equations - An Introduction to Analytical and Numerical Methods

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This textbook introduces the study of partial differential equations using both analytical and numerical methods. By intertwining the two complementary approaches, the authors create an ideal foundation for further study. Motivating examples from the physical sciences, engineering, and economics complete this integrated approach.
A showcase of models begins the book, demonstrating how PDEs arise in practical problems that involve heat, vibration, fluid flow, and financial markets. Several important characterizing properties are used to classify mathematical similarities, then elementary methods are used to solve examples of hyperbolic, elliptic, and parabolic equations. From here, an accessible introduction to Hilbert spaces and the spectral theorem lay the foundation for advanced methods. Sobolev spaces are presented first in dimension one, before being extended to arbitrary dimension for the study of elliptic equations. An extensive chapter on numerical methods focuses onfinite difference and finite element methods. Computer-aided calculation with Maple(TM) completes the book. Throughout, three fundamental examples are studied with different tools: Poisson's equation, the heat equation, and the wave equation on Euclidean domains. The Black-Scholes equation from mathematical finance is one of several opportunities for extension.
Partial Differential Equations offers an innovative introduction for students new to the area. Analytical and numerical tools combine with modeling to form a versatile toolbox for further study in pure or applied mathematics. Illuminating illustrations and engaging exercises accompany the text throughout. Courses in real analysis and linear algebra at the upper-undergraduate level are assumed.

List of contents

1 Modeling, or where do differential equations come from.- 2 Classification and characteristics.- 3 Elementary methods.- 4 Hilbert spaces.- 5 Sobolev spaces and boundary value problems in dimension one.- 6 Hilbert space methods for elliptic equations.- 7 Neumann and Robin boundary conditions.- 8 Spectral decomposition and evolution equations.- 9 Numerical methods.- 10 Maple®, or why computers can sometimes help.- Appendix.

About the author










Wolfgang Arendt is Senior Professor of Analysis at Ulm University. His research areas are functional analysis and partial differential equations.

Karsten Urban is Professor of Numerical Mathematics at Ulm University. His research interests include numerical methods for partial differential equations, especially with concrete applications in science and technology.


Report

"This book would make a good textbook because of the broad selection of material. The book devotes at least some space to every aspect of PDEs one might expect to see in an introductory graduate level course, and then some. An instructor wanting to emphasize one aspect or another may find enough material in the book. ... The spectrum of material from concrete to abstract gives a well-rounded introduction to partial differential equations." (John D. Cook, MAA Reviews, December 31, 2023)

Product details

Authors Wolfgang Arendt, Karsten Urban
Assisted by James B. Kennedy (Translation)
Publisher Springer, Berlin
 
Original title Partielle Differenzialgleichungen
Languages English
Product format Paperback / Softback
Released 03.01.2024
 
EAN 9783031133817
ISBN 978-3-0-3113381-7
No. of pages 452
Dimensions 155 mm x 25 mm x 235 mm
Illustrations XXIV, 452 p. 58 illus.
Series Graduate Texts in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.