Fr. 138.00

Präventive Schwachstellenanalytik mit Methodenzuweisung zur Produktivitätsoptimierung von Fertigungsbetrieben der Automobilzulieferindustrie

German · Paperback / Softback

Shipping usually within 4 to 7 working days

Description

Read more

Unternehmen jeder Branche und Größe bieten hohes Potenzial zur Produktivitätssteigerung in den Fertigungsbereichen. Im Laufe dieser Arbeit wird aufgezeigt, wie mit einer ganzheitlichen Schwachstellenanalytik und passender Zuweisung von anzuwendenden Methoden zur Schwachstellenbeseitigung, Potenziale der Produktivitätssteigerung identifiziert und erreicht werden können. Digitalisierung und vornehmlich Künstliche Intelligenz helfen dabei als unterstützende Kraft.
Im Aufbau startet diese Dissertation zunächst mit Begriffsdefinitionen zum detaillierteren Verständnis der Schwachstellenanalytik. Im weiteren Verlauf wird eine Struktur betrieblicher Schwachstellen erarbeitet, ergänzt durch einen entsprechenden Kennzahlenkatalog sowie Methodenkatalog. Dabei wird ein erhebliches Mengengerüst erkennbar: Die Erarbeitung einer grundlegenden Struktur betrieblicher Schwachstellen zeigt einen Schwachstellenkatalog mit 297 potenziellen Schwachstellen, der Kennzahlenkatalog beinhaltet 264 bekannte Kennzahlen und der Methodenkatalog enthält 551 verschiedene Methoden. Die Erforschung und Evaluation der Schwachstellenanalytik erfolgte anhand eines exemplarischen Stanzkontaktes. Die grundlegende Prozessfähigkeit wurde bestätigt. Anschließend wurden gezielt Korrelationen untersucht und eine Ampelprognose entwickelt. Die Verifizierung erfolgte mittels eines erneuten Datensets desselben Produktes. Die Schwachstellenanalytik wurde in ihren Grundzügen mathematisch formuliert. Die Erprobung anhand eines Montage-Prozesses bestätigte die Reproduzierbarkeit und Funktionalität der Schwachstellenanalytik. Letztlich können erhebliche Produktivitätspotenziale belegt und so der Mehrwert der Schwachstellenanalytik zur Modellverfeinerung von Machine Learning in Fertigungsbereichen bestätigt werden.

List of contents

Einleitung (Motivation, Forschungsfragen, Vorgehen).- Stand der Technik (Machine Learning, Produktivität, Methoden, Digitalisierung, Statistik).- Betriebliche Schwachstellen (Struktur & Diagnose --> Erforschung der Schwachstellenanalytik anhand eines Stanzprozesses & mathematische Formulierung).- Methodenzuweisung.- Erprobung der Schwachstellenanalytik (anhand Montageprozess).- Zusammenfassung, Grenzen & Ausblick.

About the author










Jessica Schweiger studierte Projekt Engineering an der DHBW Mannheim. Sie arbeitet seit 2006 in Vollzeit bei TE Connectivity in verschiedenen Funktionsbereichen und Rollen, u.a. Produktentwicklung, Qualität und Projektmanagement. Im Jahr 2013 schloss sie erfolgreich ein nebenberufliches MBA Studium im Fachbereich Engineering Management ab. Von 2017 bis 2023 absolvierte Jessica Schweiger eine Industriepromotion am Karlsruher Institut für Technologie in Kooperation mit TE Connectivity.

Product details

Authors Jessica Schweiger
Publisher Springer, Berlin
 
Languages German
Product format Paperback / Softback
Released 05.04.2024
 
EAN 9783662687680
ISBN 978-3-662-68768-0
No. of pages 259
Dimensions 170 mm x 16 mm x 239 mm
Illustrations XXI, 259 S. 123 Abb., 64 Abb. in Farbe.
Series ifaa-Edition
ifaa-Research
Subject Natural sciences, medicine, IT, technology > Technology > General, dictionaries

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.