Fr. 90.00

Distress Risk and Corporate Failure Modelling - The State of the Art

English · Paperback / Softback

Shipping usually within 3 to 5 weeks

Description

Read more










This book is an introduction text to distress risk and corporate failure modelling techniques. It illustrates how to apply a wide range of corporate bankruptcy prediction models and, in turn, highlights their strengths and limitations under different circumstances. It also conceptualises the role and function of different classifiers in terms of a trade-off between model flexibility and interpretability.

Jones's illustrations and applications are based on actual company failure data and samples. Its practical and lucid presentation of basic concepts covers various statistical learning approaches, including machine learning, which has come into prominence in recent years. The material covered will help readers better understand a broad range of statistical learning models, ranging from relatively simple techniques, such as linear discriminant analysis, to state-of-the-art machine learning methods, such as gradient boosting machines, adaptive boosting, random forests, and deep learning.

The book's comprehensive review and use of real-life data will make this a valuable, easy-to-read text for researchers, academics, institutions, and professionals who make use of distress risk and corporate failure forecasts.

Summary

This book serves as an introduction to distress risk and corporate failure modelling techniques. The book’s comprehensive review and use of real-life data will make this a valuable, easy-to-read text for researchers, academics, institutions and professionals who make use of distress risk and corporate failure forecasts.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.