Fr. 166.00

Knowledge Guided Machine Learning - Accelerating Discovery Using Scientific Knowledge and Data

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more










Knowledge Guided Machine Learning provides an introduction to this rapidly growing field by discussing some of the common themes of research in SGML, using illustrative examples and case studies from diverse application domains and research communities as contributed book chapters.


List of contents

About the Editors. List of Contributors. 1 Introduction. 2 Targeted Use of Deep Learning for Physics and Engineering. 3 Combining Theory and Data-Driven Approaches for Epidemic Forecasts. 4 Machine Learning and Projection-Based Model Reduction in Hydrology and Geosciences. 5 Applications of Physics-Informed Scientific Machine Learning in Subsurface Science: A Survey. 6 Adaptive Training Strategies for Physics-Informed Neural Networks. 7 Modern Deep Learning for Modeling Physical Systems. 8 Physics-Guided Deep Learning for Spatiotemporal Forecasting. 9 Science-Guided Design and Evaluation of Machine Learning Models: A Case-Study on Multi-Phase Flows. 10 Using the Physics of Electron Beam Interactions to Determine Optimal Sampling and Image Reconstruction Strategies for High Resolution STEM. 11 FUNNL: Fast Nonlinear Nonnegative Unmixing for Alternate Energy Systems. 12 Structure Prediction from Scattering Profiles: A Neutron-Scattering Use-Case. 13 Physics-Infused Learning: A DNN and GAN Approach. 14 Combining System Modeling and Machine Learning into Hybrid Ecosystem Modeling. 15 Physics-Guided Neural Networks (PGNN): An Application in Lake Temperature Modeling. 16 Physics-Guided Recurrent Neural Networks for Predicting Lake Water Temperature. 17 Physics-Guided Architecture (PGA) of LSTM Models for Uncertainty Quantification in Lake Temperature Modeling, Index.

About the author

Anuj Karpatne is an Assistant Professor in the Department of Computer Science at Virginia Tech. His research focuses on pushing on the frontiers of knowledge-guided machine learning by combining scientific knowledge and data in the design and learning of machine learning methods to solve scientific and societally relevant problems.
Ramakrishnan Kannan is the group leader for Discrete Algorithms at Oak Ridge National Laboratory. His research expertise is in distributed machine learning and graph algorithms on HPC platforms and their application to scientific data with a specific interest for accelerating scientific discovery.
Vipin Kumar is a Regents Professor at the University of Minnesota’s Computer Science and Engineering Department. His current major research focus is on knowledge-guided machine learning and its applications to understanding the impact of human induced changes on the Earth and its environment.

Summary

Knowledge Guided Machine Learning provides an introduction to this rapidly growing field by discussing some of the common themes of research in SGML, using illustrative examples and case studies from diverse application domains and research communities as contributed book chapters.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.