Fr. 39.50

Coefficient of Variation and Machine Learning Applications

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










Coefficient of Variation (CV) is a unit free index indicating the consistency of the data associated with a real-world process and is simple to mold into computational paradigms. This book provides necessary exposure of computational strategies, properties of CV and extracting the metadata leading to efficient knowledge representation. It also compiles representational and classification strategies based on the CV through illustrative explanations. The potential nature of CV in the context of contemporary Machine Learning strategies and the Big Data paradigms is demonstrated through selected applications. Overall, this book explains statistical parameters and knowledge representation models.

List of contents

1. Introduction to Statistical Dispersion 2. Coefficient of Variation 3. Coefficient of Variation Computational Strategies 4. Coefficient of Variation Based Image Representation 5. Coefficient of Variation based Decision Tree (CvDT) 6. Some Applications.

About the author

K. Hima Bindu, Raghava Morusupalli, Nilanjan Dey, C. Raghavendra Rao

Summary

This book explains computational strategies, properties of Coefficient of Variation (CV) and related metadata extraction. It includes representational/classification strategies through illustrative explanations. CV in context of contemporary Machine Learning strategies and Big Data paradigms is explained through selected applications.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.