Fr. 230.00

Earth Observation Using Python - A Practical Programming Guide

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Learn basic Python programming to create functional and effective visualizations from earth observation satellite data sets
 
Thousands of satellite datasets are freely available online, but scientists need the right tools to efficiently analyze data and share results. Python has easy-to-learn syntax and thousands of libraries to perform common Earth science programming tasks.
 
Earth Observation Using Python: A Practical Programming Guide presents an example-driven collection of basic methods, applications, and visualizations to process satellite data sets for Earth science research.
* Gain Python fluency using real data and case studies
* Read and write common scientific data formats, like netCDF, HDF, and GRIB2
* Create 3-dimensional maps of dust, fire, vegetation indices and more
* Learn to adjust satellite imagery resolution, apply quality control, and handle big files
* Develop useful workflows and learn to share code using version control
* Acquire skills using online interactive code available for all examples in the book
 
The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
 
Find out more about this book from this Q&A with the Author

List of contents

Foreword
 
Introduction
 
1 A Tour of Current Satellite Missions and Products
 
1.1 History of Computational Scientific Visualization
 
1.2 Brief catalog of current satellite products
 
1.2.1 Meteorological and Atmospheric Science
 
1.2.2 Hydrology
 
1.2.3 Oceanography and Biogeosciences
 
1.2.4 Cryosphere
 
1.3 The Flow of Data from Satellites to Computer
 
1.4 Learning using Real Data and Case Studies
 
1.5 Summary
 
1.6 References
 
2 Overview of Python
 
2.1 Why Python?
 
2.2 Useful Packages for Remote Sensing Visualization
 
2.2.1 NumPy
 
2.2.2 Pandas
 
2.2.3 Matplotlib
 
2.2.4 netCDF4 and h5py
 
2.2.5 Cartopy
 
2.3 Maturing Packages
 
2.3.1 xarray
 
2.3.2 Dask
 
2.3.3 Iris
 
2.3.4 MetPy
 
2.3.5 cfgrib and eccodes
 
2.4 Summary
 
2.5 References
 
3 A Deep Dive into Scientific Data Sets
 
3.1 Storage
 
3.1.1 Single-values
 
3.1.2 Arrays
 
3.2 Data Formats
 
3.2.1 Binary
 
3.2.2 Text
 
3.2.3 Self-describing data formats
 
3.2.4 Table-Driven Formats
 
3.2.5 geoTIFF
 
3.3 Data Usage
 
3.3.1 Processing Levels
 
3.3.2 Product Maturity
 
3.3.3 Quality Control
 
3.3.4 Data Latency
 
3.3.5 Re-processing
 
3.4 Summary
 
3.5 References
 
4 Practical Python Syntax
 
4.1 "Hello Earth" in Python
 
4.2 Variable Assignment and Arithmetic
 
4.3 Lists
 
4.4 Importing Packages
 
4.5 Array and Matrix Operations
 
4.6 Time Series Data
 
4.7 Loops
 
4.8 List Comprehensions
 
4.9 Functions
 
4.10 Dictionaries
 
4.11 Summary
 
4.12 References
 
5 Importing Standard Earth Science Datasets
 
5.1 Text
 
5.2 NetCDF
 
5.3 HDF
 
5.4 GRIB2
 
5.5 Importing Data using xarray
 
5.5.1 netCDF
 
5.5.2 GRIB2
 
5.5.3 Accessing datasets using OpenDAP
 
5.6 Summary
 
5.7 References
 
6 Plotting and Graphs for All
 
6.1 Univariate Plots
 
6.1.1 Histograms
 
6.1.2 Barplots
 
6.2 Two Variable Plots
 
6.2.1 Converting Data to a Time Series
 
6.2.2 Useful Plot Customizations
 
6.2.3 Scatter Plots
 
6.2.4 Line Plots
 
6.2.5 Adding data to an existing plot
 
6.2.6 Plotting two side-by-side plots
 
6.2.7 Skew-T Log-P
 
6.3 Three Variable Plots
 
6.3.1 Filled Contour
 
6.3.2 Mesh Plots
 
6.4 Summary
 
6.5 References
 
7 Creating Effective and Functional Maps
 
7.1 Cartographic Projections
 
7.1.1 Projections
 
7.1.2 Plate Carrée
 
7.1.3 Equidistant Conic
 
7.1.4 Orthographic
 
7.2 Cylindrical Maps
 
7.2.1 Global plots
 
7.2.2 Changing projections
 
7.2.3 Regional Plots
 
7.2.4 Swath Data
 
7.2.5 Quality Flag Filtering
 
7.3 Polar Stereographic Maps
 
7.4 Geostationary Maps
 
7.5 Plotting datasets using OpenDAP
 
7.6 Summary
 
7.7 References
 
8 Gridding Operations
 
8.1 Regular 1D grids
 
8.2 Regular 2D grids
 
8.3 Irregular 2D grids
 
8.3.1 Resizing
 
8.3.2 Regridding
 
8.3.3 Resampling
 
8.4 Summary
 
8.5 References
 
9 Meaningful Visuals

About the author










Rebekah Bradley Esmaili, Atmospheric Scientist, Science and Technology Corp. (STC) and NOAA/JPSS, University of Maryland, USA.


Product details

Authors Rebekah B Esmaili, Rebekah B. Esmaili, Rebekah B. (University of Maryland Esmaili
Publisher Wiley, John and Sons Ltd
 
Languages English
Product format Hardback
Released 20.08.2021
 
EAN 9781119606888
ISBN 978-1-119-60688-8
No. of pages 304
Series Special Publications
Subjects Natural sciences, medicine, IT, technology > Geosciences > General, dictionaries

Geophysik, Geowissenschaften, python, Geophysics, Earth Sciences, GIS u. Fernerkundung, GIS & Remote Sensing, Erdbeobachtung

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.