Fr. 266.00

Probability and Statistics for Data Science - Math + R + Data

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










Probability and Statistics for Data Science: Math + R + Data covers "math stat"-distributions, expected value, estimation etc.-but takes the phrase "Data Science" in the title quite seriously:

* Real datasets are used extensively.

* All data analysis is supported by R coding.

* Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks.

* Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture."

* Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner.

Prerequisites are calculus, some matrix algebra, and some experience in programming.

Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.

List of contents

1. Basic Probability Models. 2. Discrete Random Variables. 3. Discrete Parametric Distribution Families. 4. Introduction to Discrete Markov Chains. 5. Continuous Probability Models. 6. The Family of Normal Distributions. 7. The Family of Exponential Distributions. 8. Random Vectors and Multivariate Distributions. 9. Statistics: Prologue. 10. Introduction to Confidence Intervals. 11. Introduction to Significance Tests. 12. General Statistical Estimation and Inference 13. Predictive Modeling

About the author

Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.

Summary

This text is designed for a one-semester junior/senior/graduate-level calculus-based course on probability and statistics, aimed specifically at data science students (including computer science). In addition to calculus, the text assumes basic knowledge of matrix algebra and rudimentary computer programming.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.