Fr. 88.00

Plateau''s Problem and the Calculus of Variations

English · Hardback

Delivery time undetermined

Description

Read more

Informationen zum Autor Michael Struwe Klappentext This book is meant to give an account of recent developments in the theory of Plateau's problem for parametric minimal surfaces and surfaces of prescribed constant mean curvature ("H-surfaces") and its analytical framework. A comprehensive overview of the classical existence and regularity theory for disc-type minimal and H-surfaces is given and recent advances toward general structure theorems concerning the existence of multiple solutions are explored in full detail.The book focuses on the author's derivation of the Morse-inequalities and in particular the mountain-pass-lemma of Morse-Tompkins and Shiffman for minimal surfaces and the proof of the existence of large (unstable) H-surfaces (Rellich's conjecture) due to Brezis-Coron, Steffen, and the author. Many related results are covered as well. More than the geometric aspects of Plateau's problem (which have been exhaustively covered elsewhere), the author stresses the analytic side. The emphasis lies on the variational method.Originally published in 1989.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. Zusammenfassung This book is meant to give an account of recent developments in the theory of Plateau's problem for parametric minimal surfaces and surfaces of prescribed constant mean curvature ("H-surfaces") and its analytical framework. A comprehensive overview of the classical existence and regularity theory for disc-type minimal and H-surfaces is given and recent advances toward general structure theorems concerning the existence of multiple solutions are explored in full detail. The book focuses on the author's derivation of the Morse-inequalities and in particular the mountain-pass-lemma of Morse-Tompkins and Shiffman for minimal surfaces and the proof of the existence of large (unstable) H-surfaces (Rellich's conjecture) due to Brezis-Coron, Steffen, and the author. Many related results are covered as well. More than the geometric aspects of Plateau's problem (which have been exhaustively covered elsewhere), the author stresses the analytic side. The emphasis lies on the variational method. Originally published in 1989. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. ...

Product details

Authors Michael Struwe
Publisher Princeton University Press
 
Languages English
Product format Hardback
Released 19.04.2016
 
EAN 9780691636276
ISBN 978-0-691-63627-6
No. of pages 160
Series Princeton Legacy Library
Mathematical Notes
Subjects Natural sciences, medicine, IT, technology > Mathematics > Geometry

MATHEMATICS / Geometry / Differential, Calculus of variations, Differential and Riemannian geometry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.