Fr. 90.00

Generalized Additive Models for Location, Scale and Shape - A Distributional Regression Approach, With Applications

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more

List of contents










Preface; Notation and Termanology; Part I. Introduction and Basics: 1. Distributional Regression Models; 2. Distributions; 3. Additive Model Terms; Part II. Statistical Inference in GAMLSS: 4. Inferential Methods; 5. Penalized Maximum Likelihood Inference; 6. Bayesian Inference; 7. Statistical Boosting for GAMLSS; Part. III Applications and Case Studies: 8. Fetal Ultrasound; 9. Speech Intelligibility Testing; 10. Social Media Post Performance; 11. Childhood Undernutrition in India; 12. Socioeconomic Determinants of Federal Election Outcomes in Germany; 13. Variable Selection for Gene Expression Data; Appendix A. Continuous Distributions; Appendix B. Discrete Distributions; Bibliography; Index.

About the author

Mikis D. Stasinopoulos is Professor of Statistics at the School of Computing and Mathematical Sciences, University of Greenwich. He is, together with Professor Bob Rigby, coauthor of the original Royal Statistical Society article on GAMLSS. He has also coauthored three books on distributional regression, and in particular the theoretical and computational aspects of the GAMLSS framework.Thomas Kneib is a Professor of Statistics at the University of Göttingen, Germany, where he is the Spokesperson of the interdisciplinary Centre for Statistics and Vice-Spokesperson of the Campus Institute Data Science. His main research interests include semiparametric regression, spatial statistics, and distributional regression.Nadja Klein is Emmy Noether Research Group Leader in Statistics and Data Science and Professor for Uncertainty Quantification and Statistical Learning at TU Dortmund University and the Research Center Trustworthy Data Science and Security. Nadja is member of the Junge Akademie and associate editor for 'Biometrics,' 'JABES,' and 'Dependence Modeling.' Her. Her research interests include Bayesian methods, statistical and machine learning, and spatial statistics.Andreas Mayr is a Professor at the Institute for Medical Biometry, Informatics, and Epidemiology at the University of Bonn, Germany. He has authored more than 100 research articles both in statistics as well as medical research and is currently Editor of the 'Statistical Modelling Journal,' Associate Editor of the 'International Journal of Biostatistics,' and Editorial Board Member of the 'International Journal of Eating Disorders.'Gillian Z. Heller is Professor of Biostatistics at the NHMRC Clinical Trials Centre, University of Sydney. She has coauthored four books in the regression modelling area, the first directed towards actuarial applications of the generalized linear model, and the remaining three focussing on distributional regression, in particular the GAMLSS framework.

Summary

This text provides a state-of-the-art treatment of distributional regression, accompanied by real-world examples from diverse areas of application. Maximum likelihood, Bayesian and machine learning approaches are covered in-depth and contrasted, providing an integrated perspective on GAMLSS for researchers in statistics and other data-rich fields.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.