Fr. 166.00

Geometry of Derivation With Applications

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










Thisbook will primarily deal with connections to the theory of derivable nets and translation planes in both the finite and infinite cases. Translation planes over non-commutative skewfields have not traditionally had a significant representation in incidence geometry, and derivable nets over skewfields have only been marginally understood.

List of contents










Acknowledgements. Preface. Part 1. Classical theory of derivation. Chapter 1. Coordinate methods. Chapter 2. Embedding theory of derivable nets. Part 2. Classifying derivable nets over skewfields. Chapter 3. Fundamentals & background. Chapter 4. Classification theory over skewfields. Part 3. Types i of derivable nets. Chapter 5. The types. Part 4. Flocks of a-cones. Chapter 6. Klein quadric and generalization. Part 5. Flock geometries. Chapter 7. Related geometries. Part 6. Twisted hyerbolic flocks. Chapter 8. Hyperbolic flocks and generalizations. Part 7. Lifting. Chapter 9. Chains & surjectivity of degree 1/k. Lifting skewfields. Chapter 10. General theory. Part 9. Bilinearity. Chapter 11. General bilinear geometries. Part 10. Multiple replacement theorem. Chapter 12. The general theorem. Part 11. Classification of subplane covered nets. Chapter 13. Suspect subplane covered nets. Part 12. Extensions of skewfields. Chapter 14. Quaternion division ring extensions. Chapter 15. General ideas on Klein extensions. Bibliography. Index.


About the author










Norman L. Johnson is an Emeritus Professor (2011) at the University of Iowa where he has had ten PhD students. He received his BA from Portland State University, MA from Washington State University and PhD also at Washington State University as a student of T.G. Ostrom. He has written 580 research items including articles, books, and chapters available on Researchgate.net. Additionally, he has worked with approximately 40 coauthors and is a previous Editor for International Journal of Pure and Applied Mathematics and Note di Matematica. Dr. Johnson plays ragtime piano and enjoys studying languages and 8-ball pool.


Summary

Thisbook will primarily deal with connections to the theory of derivable nets and translation planes in both the finite and infinite cases. Translation planes over non-commutative skewfields have not traditionally had a significant representation in incidence geometry, and derivable nets over skewfields have only been marginally understood.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.