Fr. 80.00

Differential Geometry of Manifolds

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Differential Geometry of Manifolds, Second Edition presents the extension of differential geometry from curves and surfaces to manifolds in general. The book provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. It introduces manifolds in a both streamlined and mathematically rigorous way while keeping a view toward applications, particularly in physics.

The author takes a practical approach, containing extensive exercises and focusing on applications, including the Hamiltonian formulations of mechanics, electromagnetism, string theory.

The Second Edition of this successful textbook offers several notable points of revision.


New to the Second Edition:



  • New problems have been added and the level of challenge has been changed to the exercises


  • Each section corresponds to a 60-minute lecture period, making it more user-friendly for lecturers


  • Includes new sections which provide more comprehensive coverage of topics


  • Features a new chapter on Multilinear Algebra


List of contents

Analysis of Multivariable Functions

Variable Frames

Differentiable Manifolds

Multilinear Algebra

Analysis of Manifolds

Introduction to Riemannian Geometry

Applications of Manifolds to Physics

A: Point Set Topology

B: Calculus of Variations

C: Further Topics in Multilinear Algebra

About the author










Stephen Lovett is a Professor of Mathematics at Wheaton College in Illinois. He has also taught at Eastern Nazerene College. He holds a PhD from Northeastern University. He also authored three well-received texts with CRC Press, including the companion volume, Differential Geometry of Curves and Surfaces, Second Edition, with Tom Banchoff and Abstract Algebra: Structures and Applications.


Summary

The author presents the extension of differential geometry from curves and surfaces to manifolds in general. It provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. The goal is to introduce manifolds in a both streamlined and mathematically rigorous way.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.