Share
Fr. 86.00
Mona Mona, Mona Ramamurthy Mona, Pratap Ramamurthy
Official Google Cloud Certified Professional Machine Learning - Engineer Study Guid
English · Paperback / Softback
Shipping usually within 1 to 3 weeks (not available at short notice)
Description
Expert, guidance for the Google Cloud Machine Learning certification exam
In Google Cloud Certified Professional Machine Learning Study Guide, a team of accomplished artificial intelligence (AI) and machine learning (ML) specialists delivers an expert roadmap to AI and ML on the Google Cloud Platform based on new exam curriculum. With Sybex, you'll prepare faster and smarter for the Google Cloud Certified Professional Machine Learning Engineer exam and get ready to hit the ground running on your first day at your new job as an ML engineer.
The book walks readers through the machine learning process from start to finish, starting with data, feature engineering, model training, and deployment on Google Cloud. It also discusses best practices on when to pick a custom model vs AutoML or pretrained models with Vertex AI platform. All technologies such as Tensorflow, Kubeflow, and Vertex AI are presented by way of real-world scenarios to help you apply the theory to practical examples and show you how IT professionals design, build, and operate secure ML cloud environments.
The book also shows you how to:
* Frame ML problems and architect ML solutions from scratch
* Banish test anxiety by verifying and checking your progress with built-in self-assessments and other practical tools
* Use the Sybex online practice environment, complete with practice questions and explanations, a glossary, objective maps, and flash cards
A can't-miss resource for everyone preparing for the Google Cloud Certified Professional Machine Learning certification exam, or for a new career in ML powered by the Google Cloud Platform, this Sybex Study Guide has everything you need to take the next step in your career.
List of contents
Introduction xxi
Assessment Testxxxii
Chapter 1 Framing ML Problems 1
Translating Business Use Cases 3
Machine Learning Approaches 5
Supervised, Unsupervised, and Semi- supervised Learning 5
Classification, Regression, Forecasting, and Clustering 7
ML Success Metrics 8
Regression 12
Responsible AI Practices 13
Summary 14
Exam Essentials 14
Review Questions 15
Chapter 2 Exploring Data and Building Data Pipelines 19
Visualization 20
Box Plot 20
Line Plot 21
Bar Plot 21
Scatterplot 22
Statistics Fundamentals 22
Mean 22
Median 22
Mode 23
Outlier Detection 23
Standard Deviation 23
Correlation 24
Data Quality and Reliability 24
Data Skew 25
Data Cleaning 25
Scaling 25
Log Scaling 26
Z-score 26
Clipping 26
Handling Outliers 26
Establishing Data Constraints 27
Exploration and Validation at Big- Data Scale 27
Running TFDV on Google Cloud Platform 28
Organizing and Optimizing Training Datasets 29
Imbalanced Data 29
Data Splitting 31
Data Splitting Strategy for Online Systems 31
Handling Missing Data 32
Data Leakage 33
Summary 34
Exam Essentials 34
Review Questions 36
Chapter 3 Feature Engineering 39
Consistent Data Preprocessing 40
Encoding Structured Data Types 41
Mapping Numeric Values 42
Mapping Categorical Values 42
Feature Selection 44
Class Imbalance 44
Classification Threshold with Precision and Recall 45
Area under the Curve (AUC) 46
Feature Crosses 46
TensorFlow Transform 49
TensorFlow Data API (tf.data) 49
TensorFlow Transform 49
GCP Data and ETL Tools 51
Summary 51
Exam Essentials 52
Review Questions 53
Chapter 4 Choosing the Right ML Infrastructure 57
Pretrained vs. AutoML vs. Custom Models 58
Pretrained Models 60
Vision AI 61
Video AI 62
Natural Language AI 62
Translation AI 63
Speech- to- Text 63
Text- to- Speech 64
AutoML 64
AutoML for Tables or Structured Data 64
AutoML for Images and Video 66
AutoML for Text 67
Recommendations AI/Retail AI 68
Document AI 69
Dialogflow and Contact Center AI 69
Custom Training 70
How a CPU Works 71
GPU 71
TPU 72
Provisioning for Predictions 74
Scaling Behavior 75
Finding the Ideal Machine Type 75
Edge TPU 76
Deploy to Android or iOS Device 76
Summary 77
Exam Essentials 77
Review Questions 78
Chapter 5 Architecting ML Solutions 83
Designing Reliable, Scalable, and Highly Available ml Solutions 84
Choosing an Appropriate ML Service 86
Data Collection and Data Management 87
Google Cloud Storage (GCS) 88
BigQuery 88
Vertex AI Managed Datasets 89
Vertex AI Feature Store 89
NoSQL Data Store 90
Automation and Orchestration 91
Use Vertex AI Pipelines to Orchestrate the ML Workflow 92
Use Kubeflow Pipelines for Flexible Pipeline Construction 92
Use TensorFlow Extended SDK to Leverage
About the author
ABOUT THE AUTHORS MONA is an AI/ML specialist in the Google Public Sector. She is the author of Natural Language Processing with AWS AI Services and a frequent speaker at cloud computing and machine learning events. She was a Sr. AI/ML specialist SA at AWS before joining Google. She has 14 Certifications and has created courses for AWS AI/ML Certification Speciality Exam readiness. She has authored 17 articles on AI/ML and also co-authored a research paper on CORD-19 Neural Search, which won an award at the AAAI Conference on Artificial Intelligence Pratap Ramamurthy is an AI/ML Specialist Customer Engineer in Google Cloud. Previously, he worked as a Sr. Principal Solution Architect at H2O.ai and before that was a Partner Solution Architect at AWS. He has authored several research papers and holds 3 patents.
Summary
Expert, guidance for the Google Cloud Machine Learning certification exam
In Google Cloud Certified Professional Machine Learning Study Guide, a team of accomplished artificial intelligence (AI) and machine learning (ML) specialists delivers an expert roadmap to AI and ML on the Google Cloud Platform based on new exam curriculum. With Sybex, you'll prepare faster and smarter for the Google Cloud Certified Professional Machine Learning Engineer exam and get ready to hit the ground running on your first day at your new job as an ML engineer.
The book walks readers through the machine learning process from start to finish, starting with data, feature engineering, model training, and deployment on Google Cloud. It also discusses best practices on when to pick a custom model vs AutoML or pretrained models with Vertex AI platform. All technologies such as Tensorflow, Kubeflow, and Vertex AI are presented by way of real-world scenarios to help you apply the theory to practical examples and show you how IT professionals design, build, and operate secure ML cloud environments.
The book also shows you how to:
* Frame ML problems and architect ML solutions from scratch
* Banish test anxiety by verifying and checking your progress with built-in self-assessments and other practical tools
* Use the Sybex online practice environment, complete with practice questions and explanations, a glossary, objective maps, and flash cards
A can't-miss resource for everyone preparing for the Google Cloud Certified Professional Machine Learning certification exam, or for a new career in ML powered by the Google Cloud Platform, this Sybex Study Guide has everything you need to take the next step in your career.
Product details
Authors | Mona Mona, Mona Ramamurthy Mona, Pratap Ramamurthy |
Publisher | Wiley, John and Sons Ltd |
Languages | English |
Product format | Paperback / Softback |
Released | 14.12.2023 |
EAN | 9781119944461 |
ISBN | 978-1-119-94446-1 |
No. of pages | 368 |
Series |
Sybex Study Guide |
Subjects |
Guides
> Self-help, everyday life
> Family
Natural sciences, medicine, IT, technology > Technology > Electronics, electrical engineering, communications engineering Informatik, Prüfungsvorbereitung, Zertifizierung, computer science, google cloud, test prep, Zertifizierung f. MSCE u. Novell, Certification (MSCE, Novell, etc.), Grid & Cloud Computing, Grid- u. Cloud-Computing |
Customer reviews
No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.
Write a review
Thumbs up or thumbs down? Write your own review.