Fr. 320.00

Autonomic Networking-On-Chip - Bio-Inspired Specification, Development, and Verification

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Phan Cong-Vinh received a Ph.D in computer science from London South Bank University (LSBU) in the United Kingdom, a BS in mathematics and an MS in computer science from Vietnam National University (VNU) in Ho Chi Minh City, and a BA in English from Hanoi University of Foreign Languages Studies in Vietnam. He finished his PhD dissertation with the title Formal Aspects of Dynamic Reconfigurability in Reconfigurable Computing Systems supervised by Prof. Jonathan P. Bowen at LSBU where he was affiliated with the Centre for Applied Formal Methods (CAFM) at the Institute for Computing Research (ICR). From 1983 to 2000, he was a lecturer in mathematics and computer science at VNU, Posts and Telecommunications Institute of Technology (PTIT) and several other universities in Vietnam before he joined research with Dr. Tomasz Janowski at the International Institute for Software Technology (IIST) in Macao SAR, China, as a fellow in 2000. His research interests center on all aspects of formal methods, autonomic computing and networking, reconfigurable computing, ubiquitous computing, and applied categorical structures in computer science. Klappentext Written for researchers and scientists! this book presents advanced reference material for readers who already have a basic understanding of NoC and are now ready to learn how to specify! develop! and verify ANoC using rigorous approaches. Exploring the theoretical knowledge required to achieve this! the text also presents formal and practical aspects in a straightforward way by detailing elemental components and briefly touching on the more advanced ones. The authors demonstrate how to use formal ANoC methods while making sound judgments and allowing for reasonable justifications. Zusammenfassung Despite the growing mainstream importance and unique advantages of autonomic networking-on-chip (ANoC) technology, Autonomic Networking-On-Chip: Bio-Inspired Specification, Development, and Verification is among the first books to evaluate research results on formalizing this emerging NoC paradigm, which was inspired by the human nervous system. The FIRST Book to Assess Research Results, Opportunities, & Trends in "BioChipNets" The third book in the Embedded Multi-Core Systems series from CRC Press, this is an advanced technical guide and reference composed of contributions from prominent researchers in industry and academia around the world. A response to the critical need for a global information exchange and dialogue, it is written for engineers, scientists, practitioners, and other researchers who have a basic understanding of NoC and are now ready to learn how to specify, develop, and verify ANoC using rigorous approaches. Offers Expert Insights Into Technical Topics Including: Bio-inspired NoC How to map applications onto ANoC ANoC for FPGAs and structured ASICs Methods to apply formal methods in ANoC development Ways to formalize languages that enable ANoC Methods to validate and verify techniques for ANoC Use of "self-" processes in ANoC (self-organization, configuration, healing, optimization, protection, etc.) Use of calculi for reasoning about context awareness and programming models in ANoC With illustrative figures to simplify contents and enhance understanding, this resource contains original, peer-reviewed chapters reporting on new developments and opportunities, emerging trends, and open research problems of interest to both the autonomic computing and network-on-chip communities. Coverage includes state-of-the-art ANoC architectures, protocols, technologies, and applications. This volume thoroughly explores the theory behind ...

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.