Fr. 156.00

Modern Applied Regressions - Bayesian Frequentist Analysis of Categorical Limited Response

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more










Modern Applied Regressions creates an intricate mural with mosaics of categorical and limited response variable (CLRV) models using both Bayesian and Frequentist approaches. Written for graduate students, junior researchers, and quantitative analysts in behavioral, health, and social sciences.


List of contents










1. Introduction 2. Binary Regression 3. Polytomous Regression 4. Count Regression 5. Survival Regression 6. Extensions


About the author










Dr. Jun Xu is professor of sociology and data science at Ball State University. His quantitative research interests include Bayesian statistics, categorical data analysis, causal inference, machine learning, and statistical programming. His methodological works have appeared in journals such as Sociological Methods and Research, Social Science Research, and The Stata Journal. He is an author of Ordered Regression Models: Parallel, Partial, and Non-Parallel Alternatives (with Dr. Andrew S. Fullerton by Chapman & Hall). In the past two decades or so, he has authored or co-authored several statistical application commands and packages, including gencrm, grcompare and the popular SPost9.0 package in Stata, and stdcoef in R.


Summary

Modern Applied Regressions creates an intricate mural with mosaics of categorical and limited response variable (CLRV) models using both Bayesian and Frequentist approaches. Written for graduate students, junior researchers, and quantitative analysts in behavioral, health, and social sciences.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.