Fr. 100.00

Modern Data Visualization With R

English · Paperback / Softback

Shipping usually within 1 to 3 working days

Description

Read more










Ways that raw and summary data can be turned into visualizations that convey meaningful insights: basic graphs, bar charts, scatter plots, and line charts, and progresses to tree maps, alluvial plots, radar charts, mosaic plots, grouped dot plots, effects plots, multivariate presentations such as corrgrams, biplots, network diagrams.


List of contents

1. Introduction. 2. Data Preparation. 3. Introduction to ggplot2. 4. Univariate Graphs. 5. Bivariate Graphs. 6. Multivariate Graphs. 7. Maps. 8. Time-dependent graphs. 9. Statistical Models. 10. Other Graphs. 11. Customizing Graphs. 12. Saving Graphs. 13. Interactive Graphs. 14. Advice / Best Practices.

About the author

Robert Kabacoff is a data scientist with more than 30 years of experience in multivariate statistical methods, data visualization, predictive analytics, and psychometrics. A widely recognized expert in statistical programming, he is the author of R in Action: Data Analysis and Graphics with R (3rd ed.), and the popular Quick-R (www.statmethods.net) website. Dr. Kabacoff is also the co-author of Evaluating Research Articles from Start to Finish (3rd ed.), a textbook that uses a case-study approach to help students learn to read and evaluate empirical research.
Dr. Kabacoff earned his BA in psychology from the University of Connecticut and his PhD in clinical psychology from the University of Missouri-St. Louis. Following a postdoctoral fellowship in family research at Brown University, he joined the faculty at the Center for Psychological Studies at Nova Southeastern University, achieving the position of full professor in 1997. For 19 years, Dr. Kabacoff held the position of Vice President of Research for a global organizational development firm, providing research and consultation to academic, government, corporate, and humanitarian institutions in North America, Western Europe, Africa, and Asia. He is currently a professor of the practice in quantitative analysis at the Hazel Quantitative Analysis Center at Wesleyan University, teaching courses in exploratory data analysis, machine learning, and statistical software development.

Summary

Modern Data Visualization with R describes the many ways that raw and summary data can be turned into visualizations that convey meaningful insights. It starts with basic graphs such as bar charts, scatter plots, and line charts, but progresses to less well-known visualizations such as tree maps, alluvial plots, radar charts, mosaic plots, effects plots, correlation plots, biplots, and the mapping of geographic data. Both static and interactive graphics are described and the use of color, shape, shading, grouping, annotation, and animations are covered in detail. The book moves from a default look and feel for graphs, to graphs with customized colors, fonts, legends, annotations, and organizational themes.
Features

  • Contains a wide breadth of graph types including newer and less well-known approaches
  • Connects each graph type to the characteristics of the data and the goals of the analysis
  • Moves the reader from simple graphs describing one variable to building visualizations that describe complex relationships among many variables
  • Provides newer approaches to creating interactive web graphics via JavaScript libraries
  • Details how to customize each graph type to meet users’ needs and those of their audiences
  • Gives methods for creating visualizations that are publication ready for print (in color or black and white) and the web
  • Suggests best practices
  • Offers examples from a wide variety of fields
The book is written for those new to data analysis as well as the seasoned data scientist. It can be used for both teaching and research, and will particularly appeal to anyone who needs to describe data visually and wants to find and emulate the most appropriate method quickly. The reader should have some basic coding experience, but expertise in R is not required. Some of the later chapters (e.g., visualizing statistical models) assume exposure to statistical inference at the level of analysis of variance and regression.

Product details

Authors Robert Kabacoff
Publisher Taylor & Francis Ltd.
 
Languages English
Product format Paperback / Softback
Released 08.03.2024
 
EAN 9781032287607
ISBN 978-1-0-3228760-7
No. of pages 259
Dimensions 155 mm x 235 mm x 15 mm
Series Chapman & Hall/CRC The R Series
Print on Demand
Subject Education and learning > Teaching preparation > Vocational needs

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.