Fr. 91.00

Modelling Spatial and Spatial-Temporal Data - A Bayesian Approach

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach is aimed at statisticians and quantitative social, economic and public health students and researchers who work with small-area spatial and spatial-temporal data. It assumes a grounding in statistical theory up to the standard linear regression model. The book compares both hierarchical and spatial econometric modelling, providing both a reference and a teaching text with exercises in each chapter. The book provides a fully Bayesian, self-contained, treatment of the underlying statistical theory, with chapters dedicated to substantive applications. The book includes WinBUGS code and R code and all datasets are available online.
Part I covers fundamental issues arising when modelling spatial and spatial-temporal data. Part II focuses on modelling cross-sectional spatial data and begins by describing exploratory methods that help guide the modelling process. There are then two theoretical chapters on Bayesian models and a chapter of applications. Two chapters follow on spatial econometric modelling, one describing different models, the other substantive applications. Part III discusses modelling spatial-temporal data, first introducing models for time series data. Exploratory methods for detecting different types of space-time interaction are presented, followed by two chapters on the theory of space-time separable (without space-time interaction) and inseparable (with space-time interaction) models. An applications chapter includes: the evaluation of a policy intervention; analysing the temporal dynamics of crime hotspots; chronic disease surveillance; and testing for evidence of spatial spillovers in the spread of an infectious disease. A final chapter suggests some future directions and challenges.

List of contents

Introduction. Thinking spatially, thinking statistically in the social and economic sciences. The nature of spatial data and the implications for statistical analysis. Exploratory analysis of spatial and spatial-temporal data. Bayesian regression modeling with spatial data. Introduction to the Bayesian approach to regression modeling with spatial data. Topics in spatial modeling. Further topics in spatial modeling. Bayesian regression modeling with spatial-temporal data. Generic issues in spatial-temporal modeling. Topics in spatial-temporal modeling. Appendices.

About the author










Robert Haining is Emeritus Professor in Human Geography, University of Cambridge, England. He is the author of Spatial Data Analysis in the Social and Environmental Sciences (1990) and Spatial Data Analysis: Theory and Practice (2003). He is a Fellow of the RGS-IBG and of the Academy of Social Sciences.
Guangquan Li is Senior Lecturer in Statistics in the Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle, England. His research includes the development and application of Bayesian methods in the social and health sciences. He is a Fellow of the Royal Statistical Society.


Summary

This book shows how to analyze spatial and spatial-temporal data. It focuses on key datasets and data analysis, using the open source software WinBUGS, R, and GeoDa. It examines a range of different spatial and spatial-temporal data modeling situations encountered in the social and economic sciences.

Report

"Knowledge on statistical theory and regression concepts are essential to read, comprehend, appreciate, and use the rich contents of this fascinating book. This well-written book is a good source for the Bayesian concepts and methods to practice the spatial-temporal analysis using R and WinBugs codes . . . I recommend this book to economics, health, statistics and computing professionals and researchers."
~ Ramalingam Shanmugam, Texas State University

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.