Fr. 11.00

Zur Entdeckung der ersten 'Irrationalzahlen' in der griechischen Antike - Anhang: Zur Erzeugung der sogen. Seiten- und Diagonalenzahlen

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

In der griechischen Antike kannte man keine Irrationalzahlen im modernen Sinne, sondern nur Paare von Strecken, die kein gemeinsames Streckenmaß haben, die sich somit nicht zueinander verhalten, wie eine Grundzahl zu einer Grundzahl; d.h. solche Streckenverhältnisse sind nicht durch einen Bruch, durch eine rationale Zahl darstellbar, sie sind (wie man sagt) irrational. Die vorliegende Arbeit will nun darlegen, von welchen Streckenpaaren wahrscheinlich und in welcher Weise jeweils wohl erstmals gezeigt werden konnte, dass ihre Strecken kein gemeinsames Maß haben.Im Anhang wird ein antikes Verfahren 'rekonstruiert', welches das irrationale Verhältnis von Quadratseite und -diagonale (das sind die mutmaßlich erstgefundenen Strecken ohne gemeinsames Maß) näherungsweise durch Paare von Grundzahlen (durch Brüche) darstellt.

About the author










Der Autor studierte Philosophie, Mathematik, Gräzistik und veröffentlichte bisher zur Mathematik und Philosophie in der frügriechischen Antike (Dissertation), zu Platons Dialogen Phaidon, Theaitetos, Timaios und allgemein zu Platons Ontologie (im Buch zum Theaitetos).

Product details

Authors Peter Georgi
Publisher Books On Demand
 
Languages German
Product format Paperback / Softback
Released 20.11.2023
 
EAN 9783758314384
ISBN 978-3-7583-1438-4
No. of pages 44
Dimensions 170 mm x 220 mm x 4 mm
Weight 95 g
Subject Natural sciences, medicine, IT, technology > Mathematics > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.